

Electron tubes

Book T3

1986

High-power klystrons

Elcoma – Philips Electronic Components and Materials Division – embraces a world-wide group of companies operating under the following names:

IBRAPE
Miniwatt
Signetics
Mullard
PHILIPS

Elcoma offers you a technological partnership in developing your systems to the full. A partnership to which we can bring

- world-wide production and marketing
- know-how
- systems approach
- continuity
- broad product line
- fundamental research
- leading technologies
- applications support
- quality

ADEK

HIGH-POWER KLYSTRONS

page	•
Selection guide	
U.H.F. power klystrons	
Continuous-wave high-power klystrons	
Pulsed power klystrons 1	
S.H.F. power klystrons	
General	
List of symbols	,
Definitions 8	3
Waveguide data)
Flange designations	
General operational recommendations klystrons	3
Rating system	7
Device data (alpha-numerically))
Index of type numbers)

DATA HANDBOOK SYSTEM

Our Data Handbook System comprises more than 60 books with specifications on electronic components, subassemblies and materials. It is made up of four series of handbooks:

ELECTRON TUBES

BLUE

SEMICONDUCTORS

RED

INTEGRATED CIRCUITS

PURPLE

COMPONENTS AND MATERIALS

GREEN

The contents of each series are listed on pages iv to viii.

The data handbooks contain all pertinent data available at the time of publication, and each is revised and reissued periodically.

When ratings or specifications differ from those published in the preceding edition they are indicated with arrows in the page margin. Where application information is given it is advisory and does not form part of the product specification.

Condensed data on the preferred products of Philips Electronic Components and Materials Division is given in our Preferred Type Range catalogue (issued annually).

Information on current Data Handbooks and on how to obtain a subscription for future issues is available from any of the Organizations listed on the back cover.

Product specialists are at your service and enquiries will be answered promptly.

ELECTRON TUBES (BLUE SERIES)

The blue series of data handbooks comprises:

T1	Tubes for r.f. heating
T2a	Transmitting tubes for communications, glass types
T2b	Transmitting tubes for communications, ceramic types
Т3	Klystrons
T4	Magnetrons for microwave heating
T5	Cathode-ray tubes Instrument tubes, monitor and display tubes, C.R. tubes for special applications
Т6	Geiger-Müller tubes
Т8	Colour display systems Colour TV picture tubes, colour data graphic display tube assemblies, deflection units
T9	Photo and electron multipliers
T10	Plumbicon camera tubes and accessories
T11	Microwave semiconductors and components
T12	Vidicon and Newvicon camera tubes
T13	Image intensifiers and infrared detectors
T15	Dry reed switches
T16	Monochrome tubes and deflection units Black and white TV picture tubes, monochrome data graphic display tubes, deflection units

SEMICONDUCTORS (RED SERIES)

The red series of data handbooks comprises:

S13

Semiconductor sensors

S1	$\label{eq:Diodes} \textbf{Diodes} \\ \textbf{Small-signal silicon diodes, voltage regulator diodes ($<$ 1,5$ W), voltage reference diodes, tuner diodes, rectifier diodes} \\$
S2a	Power diodes
S2b	Thyristors and triacs
S3	Small-signal transistors
S4a	Low-frequency power transistors and hybrid modules
S4b	High-voltage and switching power transistors
S5	Field-effect transistors
S6	R.F. power transistors and modules
S7	Surface mounted semiconductors
S8a	Light-emitting diodes
S8b	Devices for optoelectronics Optocouplers, photosensitive diodes and transistors, infrared light-emitting diodes and infrared sensitive devices, laser and fibre-optic components
S9	Power MOS transistors
S10	Wideband transistors and wideband hybrid IC modules
S11	Microwave transistors
S12	Surface acoustic wave devices

INTEGRATED CIRCUITS (PURPLE SERIES)

The purple series of data handbooks comprises:

EXIST	ING SERIES	Superseded by:
IC1	Bipolar ICs for radio and audio equipment	IC01N
IC2	Bipolar ICs for video equipment	IC02Na and IC02Nb
IC3	ICs for digital systems in radio, audio and video equipment	IC01N, IC02Na and IC02Nb
IC4	Digital integrated circuits CMOS HE4000B family	
IC5	Digital integrated circuits — ECL ECL10 000 (GX family), ECL100 000 (HX family), dedica	IC08N ted designs
IC6	Professional analogue integrated circuits	IC03N and Supplement to IC11N
IC7	Signetics bipolar memories	
IC8	Signetics analogue circuits	IC11N
IC9	Signetics TTL logic	IC09N and IC15N
IC10	Signetics Integrated Fuse Logic (IFL)	IC13N
IC11	Microprocessors, microcomputers and peripheral circuitry	IC14N

	OFD	IFO
NEW	SER	IES

NEW SERIES			
IC01N	Radio, audio and associated systems Bipolar, MOS	(published 1985)	
IC02Na	Video and associated systems Bipolar, MOS Types MAB8031AH to TDA1524A	(published 1985)	
IC02Nb	Video and associated systems Bipolar, MOS Types TDA2501 to TEA1002	(published 1985)	
IC03N	Integrated circuits for telephony	(published 1985)	
IC04N	HE4000B logic family CMOS		
IC05N	HE4000B logic family — incased ICs CMOS	(published 1984)	
IC06N*	High-speed CMOS; PC74HC/HCT/HCU Logic family	(published 1986)	
IC07N	High-speed CMOS; PC54/74HC/HCT/HCU — uncased ICs Logic family		
IC08N	ECL 10K and 100K logic families	(published 1984)	
IC09N	TTL logic series	(published 1984)	
IC10N	Memories MOS, TTL, ECL		
IC11N	Linear LSI	(published 1985)	
Supplement to IC11N	Linear LSI	(published 1986)	
IC12N	Semi-custom gate arrays & cell libraries ISL, ECL, CMOS		
IC13N	Semi-custom Integrated Fuse Logic	(published 1985)	
IC14N	Microprocessors, microcontrollers & peripherals Bipolar, MOS	(published 1985)	

IC15N Note

Books available in the new series are shown with their date of publication.

FAST TTL logic series

(published 1984)

^{*} Supersedes the IC06N 1985 edition and the Supplement to IC06N issued Autumn 1985.

COMPONENTS AND MATERIALS (GREEN SERIES)

The green series of data handbooks comprises:

C1	Programmable controller modules
	PLC modules, PC20 modules

- C2 Television tuners, coaxial aerial input assemblies, surface acoustic wave filters
- C3 Loudspeakers
- C4 Ferroxcube potcores, square cores and cross cores
- C5 Ferroxcube for power, audio/video and accelerators
- C6 Synchronous motors and gearboxes
- C7 Variable capacitors
- C8 Variable mains transformers
- C9 Piezoelectric quartz devices
- C10 Connectors
- C11 Varistors, thermistors and sensors
- C12 Potentiometers, encoders and switches
- C13 Fixed resistors
- C14 Electrolytic and solid capacitors
- C15 Ceramic capacitors
- C16 Permanent magnet materials
- C17 Stepping motors and associated electronics
- C18 Direct current motors
- C19 Piezoelectric ceramics
- C20 Wire-wound components for TVs and monitors
- C21* Assemblies for industrial use HNIL FZ/30 series, NORbits 60-, 61-, 90-series, input devices
- C22 Film capacitors

^{*} To be issued shortly.

U.H.F. POWER KLYSTRONS

type	status	cooling	output power, peak sync. kW	frequency range MHz
YK1001	M	FA	11	470 to 860
YK1002		W, FA	11	470 to 860
YK1151	M	FA	25	470 to 860
YK1190	M	V/VC/W	45	470 to 610
YK1191	M	V/VC/W	45	590 to 720
YK1192	M	V/VC/W	45	710 to 860
YK1198	M	V/VC/W, FA	60 c.w.	600 to 800
YK1220	C	V/VC/W, FA	16.5	470 to 860
YK1223	P	V/VC/W, FA	16.5	470 to 860
YK1230	C	V/VC/W, FA	27	470 to 860
YK1233	P	V/VC/W, FA	27	470 to 860
YK1263	P	V/VC/W, FA	58	470 to 810
YK1265	P	V/VC/W, FA	64	470 to 810
YK1295	CCC	V/VC/W, FA	58	470 to 610
YK1296		V/VC/W, FA	58	590 to 720
YK1297		V/VC/W, FA	58	710 to 860

HIGH-POWER KLYSTRONS

			output power		
type	status	cooling	c.w. kW	pulse kW	centre frequency MHz
YK1240	P	W	_	330	1300
YK1250	P	W	400	_	999.3
YK1300	Р	W	600	_	499.7
YK1301	P	W	800	_	499.7
YK1302	Р	V.FA	800	_	508.6
YK1303*	Р	V,FA	1000	_	508.6
YK1305	Р	W	350	_	499.7
YK1350	P	W	1000	_	352.21

PULSED POWER KLYSTRONS

type	status	cooling	output power kW	gain dB	frequency MHz
YK1110 YK1510 YK1511 YK1512 YK1600	C P P P N	W W W W	6000 20000 20000 20000 35000	30 44 44 44 53	2998 ± 5 S-band S-band S-band 2998.5

S.H.F. POWER KLYSTRONS

type	status	cooling	output power kW	gain dB	frequency range MHz
YK1210	С	FA	1.15	50	11800 to 12200

COOLING: FA = forced air; W = water; V = vapour; VC = vapour condensation.

^{*} Data available on request.

CLASSIFICATION

The devices are classified as follows:

- **N** = **New type.** Recommended for new equipment design. Data sheets contain advance information and specifications are subject to change without notice.
- P = Preferred type. Recommended for equipment design; production quantities available at date of publication.
- C = Current type. No longer recommended for equipment design; available for equipment production and for use in existing equipment.
- M = Maintenance type. No longer recommended for equipment production; available for maintenance of existing equipment.
- O = Obsolescent type. Available until present stocks are exhausted.

Obsolescent types of which all stocks are exhausted are called **obsolete**; any data still published on these types is for reference purposes only.

GENERAL

LIST OF SYMBOLS

1. Symbols denoting electrodes and electrode connections

Anode	a
Accelerator electrode	acc
Collector electrode	coll
Filament or heater	f
Filament or heater tap	fc
Grid	g
Tube pin which must not be connected externally	i.c.
Cathode	k
Resonator	res
Helical electrode	×

2. Symbols denoting voltages

Remarks

- a. In the case of indirectly heated tubes the voltages on the various electrodes are with respect to the cathode; in the case of directly heated, d.c. fed tubes, with respect to the negative side of the filament; and in the case of directly heated, a.c. fed tubes, with respect to the electrical centre of the filament, unless otherwise stated.
- b. The symbols quoted below represent the average values of the voltages concerned, unless otherwise stated.

Anode voltage	Va
Anode voltage in cut-off or in cold condition	Vao
Accelerator voltage	V _{acc}
Supply voltage of tube electrodes	V_b
Collector voltage	V _{coll}
Filament or heater voltage	V_{f}
Filament or heater starting voltage	V_{fo}
Voltage between focusing electrode and cathode	V _{foc}
Grid voltage	Vg
A.C. input voltage	Vi
Inverse voltage	V _{inv}
Voltage between cathode and heater	V_{kf}
A.C. output voltage	Vo
Peak value of a voltage	Vp
Resonator voltage	V _{res}
Voltage on helical electrode	V _x
	^

GENERAL

3. Symbols denoting currents

Remarks

- a. The positive electrical current is directed opposite to the direction of the electron current.
- The symbols quoted below represent the average values of the currents concerned, unless otherwise stated.

Anode current	la
Accelerator current	lacc
Collector current	I _{coll}
Filament or heater current	I _f
Filament or heater starting current	Ifo
Peak filament or heater starting current	Ifp, Ifsurge
Grid current	l _g
Cathode current	I _k
Peak value of a current	I _p
Resonator current	I _{res}
Current to helical electrode	I _x

4. Symbols denoting powers

4. Symbols denoting powers	
Anode dissipation	Wa
Collector dissipation	W _{coll}
A.C. driving power	Wdr
Grid dissipation	Wg
Input power	w_i
D.C. anode supply power	Wia
Peak input power	Wip
Output power	Wo

5. Symbols denoting capacitances

Measurer	lan	tha.	001	d +1	Ihac

Peak output power Resonator dissipation

Wedsared on the cord tabes.	
Capacitance between anode and all other elements except control grid	Ca
Capacitance between anode and grid (all other elements being earthed)	Cag
Capacitance between anode and cathode (all other elements being earthed)	Cak
Capacitance between a grid and all other elements except anode	C_{g}
Canacitance between a grid and cathode (all other elements being earthed)	Cale

External a.c. resistance in anode lead or matching resistance	Ra
Filament or heater resistance in cold condition	R _{fo}
External resistance in a grid lead	R_q
Internal resistance of a tube	Ri
External resistance in a cathode lead	Rk
External resistance between cathode and heater	Rkf

External resistance in a cathode lead	Rk
External resistance between cathode and heater	Rkf
7. Symbols denoting various quantities	
Bandwidth	В
Noise factor	F
Frequency	f
Pulse repetition rate	fimp
Power gain	
Magnetic field strength	Н
Height above sea level	h
Pressure drop of cooling air or cooling water	Δp
Required air flow or water flow for cooling	q
Transconductance	S
Temperature of anode or anode block	Ta
Ambient temperature	Tamb
Averaging time of current or voltage	tav
Inlet temperature of cooling air or cooling water	T _i
Pulse duration	timp
Outlet temperature of cooling air or cooling water	To

Time of rise of voltage

Cathode preheating time, also called waiting time; the minimum period of time during which the heater or filament voltage should be applied before the application of electrode voltages

Rate of rise of voltage		$\frac{dV_a}{dt}$,
Voltage standing-wave ratio		VSWR
Reflection coefficient		σ
Duty factor		δ
Efficiency		η
Wavelength		λ
Amplification factor		μ
Temperature, relative		θ

TUBES FOR MICROWAVE EQUIPMENT DEFINITIONS

B Bandwidth.

 $\Delta f/\Delta T$ The temperature coefficient $\Delta f/\Delta T$ is the change of frequency with temperature.

fimp Pulse repetition rate.

 Δf_p The pulling figure Δf_p is the difference between the maximum and minimum frequencies, reached when the phase angle of the load with a VSWR of 1,5 is varied from 0° to 360°.

H Magnetic field strength.

timp The pulse duration timp is defined as the time interval between the two points on the current pulse at which the current is 70% of the smooth peak current (see Fig.1).

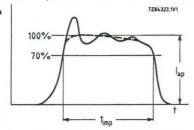


Fig. 1 Current pulse.

The smooth peak is the maximum value of a smooth curve through the average of the fluctuation over the top portion of the pulse.

t_{rv} The time of rise of voltage t_{rv} is defined as the time interval between points of 10 and 90

per cent of the smooth peak value measured on the leading edge of the voltage pulse.

Ta Temperature of anode or anode block.

VSWR The voltage standing-wave ratio in a waveguide is the ratio of the amplitude in the electrical

field at a voltage maximum to that at an adjacent minimum.

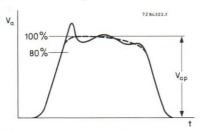


Fig. 2 Voltage pulse.

The duty factor δ is the ratio of the pulse duration to the time between corresponding points of two successive pulses.

δ

RECTANGULAR WAVEGUIDE DATA AND DESIGNATIONS

FREQUENCY		WAVEGUID	WAVEGUIDE DESIGNATION	ATION			WA Inner c	WAVEGUIDE Inner cross-section 153-IEC*	tion		WAVEGUIE Duter cross-se 153-IEC*	WAVEGUIDE Outer cross-section 153-IEC*	ATTE for c	ATTENUATION in dB/m for copper waveguide 153-IEC*	dB/m uide	Theore	Theoretical C. W.
TE ₁₀ - mode 153-IEC* GHz	153-IEC*	BRITISH STAND.	RETMA	RG- brass	G- /U alum.	BAND	Width	Height	Tolerance on width and height	Width	Height	Tolerance on width and height ±	Frequency	Theoretical value	Maximum	lowest	lowest to highest frequency MW
1.14 - 1.73	R 14	WG 6	WR 650	69	103		165.10	82.55	0.33	169 16	19.98	0.20	1.36	0.00522	0.007	12.0	-17.0
1.45 - 2.20	R 18	WG 7	WR 510	T	1	Q	129.54	64.77	0.26	133.60	68.83	0.20	1.74	0.00749	0.010	7.5	-11.0
1.72 - 2.61	R 22	WG 8	WR 430	104	105	1	109.22	54.61	0.22	113.28	58.67	0.20	2.06	0.00970	0.013	5.2	- 7.5
2.17 - 3.30	R 26	WG 9A	WR 340	112	113	I	96.36	43.18	0.17	90.42	47.24	0.17	2.61	0.0138	0.018	3.4	- 4.8
2.60 - 3.95	R 32	WG 10	WR 284	48	75	S	72.14	34.04	0.14	76.20	38.10	0.14	3.12	0.0189	0.025	2.2	- 3.2
3.22 - 4.90	R 40	WG 11A	WR 229	1	1	4	58 17	29.083	0.12	61.42	32.33	0.12	3.87	0.0249	0.032	1.6	- 2.2
3.94 - 5.99	R 48	WG 12	WR 187	49	98	9	47.55	22 149	0.095	20.80	25.40	0.095	4 73	0.0355	0.046	0.94	- 1.32
4.64 - 7.05	R 58	WG 13	WR 159	1	1	0	40.39	20.193	:80:0	43.64	23.44	0.081	5.57	0.0431	0.056	62.0	0.1 -
5.38 - 8.17	R 70	WG 14	WR 137	20	106	-	34.85	15.799	0.070	38.10	19.05	0.070	6.46	0.0576	0.075	0.56	- 0.71
6.57 - 9.99	R 84	WG 15	WR 112	51	89	I	28.499	12.624	0.057	31.75	15.88	0.057	7.89	0.0794	0.103	0.35	- 0.46
7.00 - 11.00	1	1	WR 102	ĺ	320	-	25.90	12.95	0.125	29.16	16.21	0.125	1	1	1	0.33	- 0.43
8.2 - 12.5	B 100	WG 16	WR 90	52	19	×	22.860	10.160	0.046	25.40	12.70	0.05	9.84	0.110	0.143	0.20	- 0.29
9.84 - 15.0	R 120	WG 17	WR 75	1	1	Σ	19.050	9.525	0.038	21.59	12.06	0.05	11.8	0.133	1	0.17	- 0.23
11.9 - 18.0	R 140	WG 18	WR 62	91		а	15.799	7.899	0.03	17.83	9.93	90.0	14.2	0.176	T	0.12	91.0 -
14.5 - 22.0	R 180	WG 19	WR 51	1	1	1	12.954	6.477	0.026	14.99	8.51	0.05	17.4	0.238	1	0.080	- 0.107
17.6 - 26.7	R 220	WG 20	WR 42	53	121	1	10.668	4.318	0.02	12.70	6.35	0.05	21.1	0.370	1	0.043	- 0.058
21.7 - 33.0	R 260	WG 21	WR 34	F	1	1	8.636	4.318	0.020	10.67	6.35	0.05	26.1	0.435	I	0.034	- 0.048
26.4 - 40.0	R 320	WG 22	WR 28	1	1	1	7.112	3.556	0.020	9.14	5.59	0.05	31.6	0.583	1	0.022	- 0.031
32.9 — 50.1	R 400	WG 23	WR 22	ĵ	I	-	5.690	2.845	0.020	7.72	4.88	0.05	39.5	0.815	1	0.014	- 0.020
39.2 - 59.6	R 500	WG 24	WR 19	1	1	1	4.775	2.388	0.020	6.81	4.42	90.0	47.1	1.060	ļ	0.011	- 0.015
49.8 - 75.8	R 620	WG 25	WR 15	-	1	1	3.759	1.880	0.020	5.79	3.91	0.05	6.65	1.52	1	0.0063	060000 -
60.5 - 91.9	R 740	WG 26	WR 12	1	1	-	3.099	1.549	0.020	5.13	3.58	0.05	72.6	2.03	I	0.0042	0900.0 -
73.8 -112.0	В 900	WG 27	WR 10	1	-		2.540	1.270	0.020	4.57	3.30	0.05	98.6	2.74	1	0.0030	- 0.0041
92.2 -140.0	R 1200	WG 28	WR 8	1	1	-	2:032	1.016	0.020	4.06	3.05	0.05	111.0	3.82	1	0.0018	- 0.0026
114.0 -173.0	R 1400	WG 29	WR 7	1	1	1	1.651	0.826		1	1	1.	136.3	5.21	1	0.0012	- 0.0017

IEC Recommendations are obtainable from :
 Central Office of the International Electrotechnic

Central Office of the International Electrotechnical Commission 1, rue de Varembé GENEVA, Switzerland

** based on breakdown of air of 15,000 volts per cm (safety factor of approx. 2 at sea level)

FLANGE DESIGNATIONS

							FLANGE DE	SIGNATIO	N	
FOR			PI	LAIN F	LANGE		CHOKE FLANGE			
WAVEGU 153 - IEG			154	- IEC		U	JAN G /U Aluminium	154 - IEC	U	IAN G /U Aluminiun
R 1	4	PDR	14			417A	418A			
R 1	8	PDR	18							E N
R 2	2	PDR	22			435A	437A	-		
R 2	6	PDR	26			553	554			
R 3	2	UER PAR	32 32	PDR	32 32	53	584	CAR 32	54A	585A
R 4	0	UER	40	PDR	40					
R 4	8	PAR UAR	48 48	PDR UER	48 48	149A	407	CAR 48	148C	406B
R 5	8	PAR UAR	58 58	PDR UER	58 58			CAR 58		
R 7	0	PAR UAR	70 70	PDR UER	70 70	344	441	CAR 70	343B	440B
R 8	4	PBR UBR	84 84	PDR UER	84 84	51	138	CBR 84	52B	137B
R 10	0	PBR UBR	100	PDR UER		39	135	CBR 100	40B	136B
R 12	0	-					10			=
R 14	0	PBR	140	UBR	140	419		CBR 140	541A	
R 18	0									3
R 22	0	PBR PCR		UBR	220	595	597	CBR 220	596A	598A
R 26	0	PCR	260							
R 32	0	PBR UBR		PCR	320	599		CBR 320	600A	
R 40	0	PCR	400			383			8 1	To a second
R 50	0	PCR	500	PAR	500			. s 18 .		12 3
R 62	0	PCR	620	PFR	620	385	1014		la III a	145 5
R 74	0	PCR	740	PFR	740	387			1 1 1	
R 90	0	PCR	900	PFR	900					
R 120	0	PCR	1200	PFR	1200			-		

IEC

Waveguide flanges covered by IEC recommendation shall be indicated by a reference number comprising the following information:

- a. the number of the present IEC publication.
- b. the letter "IEC".
- c. a dash.
- d. a letter relating to the basic construction of the flange
 - P = pressurable
 - C = choke, pressurizable
 - U = unpressurizable
- e. a letter for the type according to the drawing. Flanges with the same letter and of the same waveguide size can be mated.
- f. the letter and number of the waveguide for which the flange is designed.

UNPI	RESSUR	ABLE	PRE	SSURA	BLE		CHOKE
	14			14			
	32 70	Type A	Type D	32 70	Type A	32 70	Type A
Type E	84 100			84 100	5	84	
	120	Type B		220	Type B		Type B
	320	1,750.5	Type C	320 500	1,900 0	320	1,750.5
			Type F	620 1200			

* IEC Recommendations are obtainable from :

Central Office of the International Electrotechnical Commission 1, rue de Varembé GENEVA, Switzerland

GENERAL OPERATIONAL RECOMMENDATIONS KLYSTRONS

1. GENERAL

1.1 Data

The characteristic data, operational data, capacitance values and curves apply to an average tube which is characteristic of the type of tube in question.

1.2 Reference point of the electrode voltages

If not otherwise stated the electrode voltages are given with respect to the cathode.

1.3 Operational data

The operational data stated in the data sheets do not relate to any fixed setting instructions. They should rather be regarded as recommendations for the effective use of the tube. On account of the tolerances prevailing, deviations from the settings stated may occur.

It is also possible to use other settings, for which purpose the graphs can be used for finding the operational data, or for which purpose interpolation between the settings stated can be performed. If one wishes to deviate from the settings recommended in the data sheets, one should take great care not to exceed the permissible limiting values. If appreciable deviations occur, the manufacturer should be consulted.

A general rule for multi-cavity klystrons is that the accelerator electrode voltage and/or the focusing electrode voltage must be adjusted so that the cathode current stated will flow.

1.4 D.C. connections

At all times there should be a d.c. connection between each electrode and the cathode. If necessary, limiting values have been stated for the resistance of these connections.

1.5 Mounting and removal

The instructions relating to each type of tube can be found in the data sheets and the "Instructions for operation and maintenance".

The mounting and removal should be effected with extreme care to avoid damage to the tube. This also applies to rejected tubes, where claims are made under guarantee.

Ferromagnetic parts must not be used in the vicinity of klystrons equipped with a permanent magnet, as this might have a detrimental effect on the operation of the klystron. If necessary, the ceramic insulators and windows must be carefully cleaned, as dirt may damage the klystron on account of local overheating. Naturally the flange of the output cavity must also be thoroughly cleaned so as to prevent arcing.

The "Instructions for operation and maintenance" should in all cases be followed.

1.6 Accessories

Perfect operation of the tubes can only be guaranteed if use is made of the accessories which the manufacturer designed for the tube.

1.7 Supply leads

The supply leads to the connections and terminals must be of such a quality that no mechanical stresses, due to differences in temperature or other causes, can occur.

1.8 Danger of radiation

In general the absorption in the tissues of the body, and hence the danger, is the greater the shorter the wavelength of the h.f. radiation for equal output. The output of klystrons may be so high that injuries (in particular of the eye) can be inflicted.

Klystrons operated at a high voltage (exceeding 16 kV) may, moreover, emit X-rays of appreciable intensity, which call for protection of the operators.

2. LIMITING VALUES

2.1 Absolute limiting values

In all cases the limiting values stated are absolute maximum or minimum values. They apply either to all settings or to the various modes of operation. The values stated should in no case be exceeded, neither on account of mains voltage fluctuations and load variations, nor on account of production tolerances in the various building elements (resistors, capacitors, etc.) and tubes, or as a result of meter tolerances when setting the voltages and currents.

Every limiting value should be regarded as the permissible absolute maximum independent of other values. It is not permitted to exceed one limiting value because another is not reached. For instance, one should not allow the limiting value of the collector current to be surpassed while reducing the collector voltage below the permissible limiting value.

If in special cases it should be necessary to exceed a specific limiting value, it is advisable to consult the tube manufacturer, as otherwise no claims can be made.

2.2 Protective circuit

To prevent the limiting values of voltages, currents, outputs and temperatures from being exceeded, fast-operating protective circuits must be provided.

2.3 Drift current

The limiting value indicated for the drift current is an arithmetical mean value.

3. NOTES ON OPERATION

3.1 Operational data and variations

When developing electrical equipment the spread in the tube data must be taken into account; if necessary, the tube tolerances can be applied for.

With respect to the spread in the operational data and the average values stated in the data sheets it is recommended that a certain margin be allowed for in the output and input powers when designing equipment intended for series production.

3.2 Input power, required driving power

In the data sheets the power stated is the input power W_{dr} fed to the input cavity and measured between the circulator and this cavity with a 50-ohm resistor serving as a substitute for the load presented by the cavity.

3.3 Output power

As a general principle the effective output power is stated.

3.4 Sequence of application of the electrode voltages

With multi-cavity klystrons the electrode voltages must be connected in the order given in the operating instructions.

3.5 Drift current

When the klystron is driven by an a.m. signal (for instance a video signal), the drift current fluctuates with the modulation. Consequently, the power supply unit must be designed so as to be suitable for the peak values occurring, which may be appreciably higher than the arithmetical mean values stated.

4. HEATING

4.1 Type of current

Klystrons can be heated by means of either standard alternating current or direct current. At other frequencies the tube manufacturer should be consulted.

4.2 Adjusting the heater voltage

The heater voltage generally governs the adjustment of the heating, while the heater current may deviate from its nominal value within fixed tolerances. The heater voltage should be maintained as accurately as possible. For measuring the heater voltage a r.m.s. voltmeter is required. This meter must be directly connected to the filament terminals of the tube and have an inaccuracy < 1,5% in the voltage range concerned. The indicated measuring value should lie in the uppermost third of the scale.

4.3 Switching on the heater current

If the data sheet does not contain special data concerning the heater current during switch-on, the tube may be switched on at full heater voltage.

If maximum values are stated for the heater current during switch-on, they relate to the absolute maximum instantaneous value under unfavourable conditions. In the case of a.c. supply this value will occur if the tube is switched on at the maximum amplitude of the highest mains voltage. It is possible to calculate the maximum current during switch-on if the cold resistance and the relationship between the heater current and the heater voltage is known. In practice a heater transformer more or less acting as a leakage transformer is mostly used for limiting the starting current, or a choke coil or resistor is connected in series with the primary of the heater transformer. This choke coil or resistor can be short-circuited by a relay whose action is delayed by about 15 seconds. By means of a calibrated oscilloscope it can be checked whether the starting current remains within the permissible limits; the supply lead may, if necessary, be used as measuring resistance.

5. COOLING

5.1 Forced-air cooling

It is essential that the faces of tubes that are to be cooled by an air-blast should be hit as evenly as possible by the air stream, so as to prevent large differences in temperature which may give rise to mechanical stresses. In many cases (in particular with the large types of tubes) an additional air stream must be directed to the metal-to-ceramic seals. The cooling air is usually supplied from a fan via an insulating duct. This air should be filtered, so that all impurities and moisture are removed; in addition to this the radiator must be cleaned at regular intervals. The data concerning the cooling can be found in the data sheets. The cooling must be switched on together with the heating. After the klystron has been switched off cooling air must be supplied for some time; this period depends on the size of the tube and the load. If the cooling of whatever part of the tube is interrupted or if the quantity of cooling air is too small, the collector voltage and the heating must be switched off automatically.

5.2 Water cooling

With water-cooled klystrons the cooling equipment is rigidly attached to the tube. If the equipment should be live, the cooling water must be supplied through insulating pipes, of sufficient length.

The water cooling and air cooling for other parts of the tube must be switched on together with the heating. The cooling-water circuit must be arranged so that the water always enters at the bottom, no matter how the tube is mounted. If the pumps should be out of operation, the water jacket(s) of the tube must always be full. In that case after-cooling may in general be done away with.

In many cases the metal-to-glass or metal-to-ceramic seals require additional cooling by a low-velocity air flow. If the cooling-water supply or additional air cooling should fail, the collector voltage and heating must immediately be switched off. Further cooling data can be found in the data sheets.

The specific resistance of the cooling water must be minimum $20~k\Omega\cdot cm$, the temporary hardness must be maximum 6 German degrees of hardness. In principle distilled water should be used in the circulation cooler; to reduce the corrosive effect of the distilled water about 700 mg of 24% hydrazin hydrate and 700 mg sodium silicate must be added per litre. The pH-value should range from 7 to 9.

If frost is to be expected, a standard glycol based antifreeze for cars, like Glysantin should be added.

5.3 Vapour cooling

The conversion of water of 100 $^{\rm O}$ C to steam of 100 $^{\rm O}$ C requires an energy of 2256 kJ/ ℓ . This energy is extracted from the collector which by this means is cooled very effectively.

The cooling system may be designed as a closed circuit where the steam is ducted upwards or downwards to the applied heat exchanger. Due to a strong deposit of minerals during the continued variation of the aggregate state, the use of distilled water is absolutely necessary. When commencing operation a multiple change of the complete cooling water is recommended to dispose deteriorations of the systems.

The loss of coolant during operation is very low (1 ℓ per week approx).

It is obvious, that a vapour cooling system is advantageous only in stationary assemblies and for high dissipation levels. This, however, yields another advantage of vapour cooling. The energy, generated in the heat exchanger, can be used very effectively i. e. for heating purposes.

6. STORAGE

Klystrons may only be stored in their original packing and according to the instructions, so as to avoid damage. For fitting, the tubes must be removed from the packing and directly inserted into the support. In all cases the "Instructions for operation and maintenance" must be adhered to.

In the case of prolonged storage the vacuum of high-power klystrons should be checked at intervals of about three months and improved if necessary, both being possible with the aid of the built-in getter ion pump and a suitable power supply/test unit. During this operation the heater supply should preferably be turned on slowly.

RATING SYSTEM

(in accordance with IEC Publication 134)

ABSOLUTE MAXIMUM RATING SYSTEM

Absolute maximum ratings are limiting values of operating and environmental conditions applicable to any electronic device of a specified type as defined by its published data, which should not be exceeded under the worst probable conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking no responsibility for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the device under consideration and of all other electronic devices in the equipment.

The equipment manufacturer should design so that, initially and throughout life, no absolute maximum value for the intended service is exceeded with any device under the worst probable operating conditions with respect to supply variation, equipment component variation, equipment control adjustment, load variations, signal variation, environmental conditions, and variations in characteristics of the device under consideration and of all other electronic devices in the equipment.

And the same of

U.H.F. POWER KLYSTRONS

Power amplifier klystrons in metal-ceramic construction for the frequency band 470 MHz to 860 MHz designed for four external resonant cavities, beam focusing by means of permanent magnets, continuously operating getter-ion pump and operation with a depressed collector potential. These klystrons are intended for use as u.h.f. power amplifier in vision and/or sound transmitters for the TV bands IV and V.

QUICK REFERENCE DATA

Frequency range

470 to 860 MHz

Power output

11 kW

Power gain

30 dB

Cooling

YK1001: air-cooled drift tubes and air-cooled collector YK1002: air-cooled drift tubes and water-cooled collector

This data must be read in conjunction with GENERAL OPERATIONAL RECOMMENDATIONS for KLYSTRONS.

HEATING: indirect by a.c. or d.c.

Cathode

dispenser type

Heater voltage

Vf

7.5 to 8.0 V

During operation the applied heater voltage should not fluctuate more than \pm 3%. It is advised to operate the klystron at 8 to 8.5 V (including mains fluctuations) during the first 300 hours. The heater voltage should then be reduced to 7.5 to 8.0 V.

Heater current

If

32 (≤ 36) A

The heater current should never exceed a peak value of 80 A when applying an a.c. heater voltage or 65 A when applying a d.c. heater voltage.

Cold heater resistance

Rfo

28 mΩ

Waiting time

tw min. 180 s

GETTER-ION PUMP POWER SUPPLY

Pump voltage, unloaded (cathode reference)

4.0 kV

Internal resistance

approx. 300 k Ω

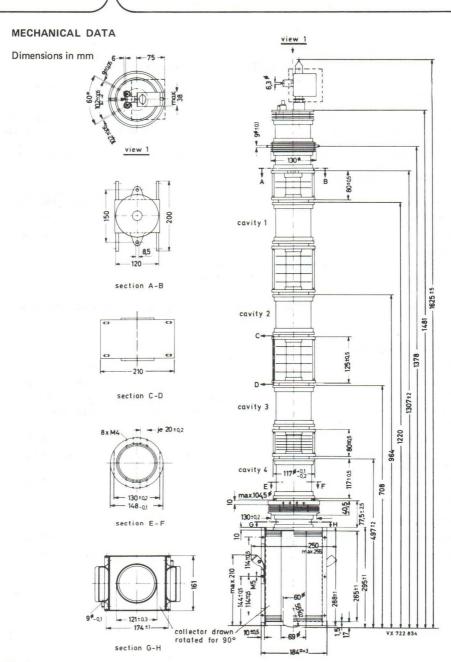


Fig. 1.

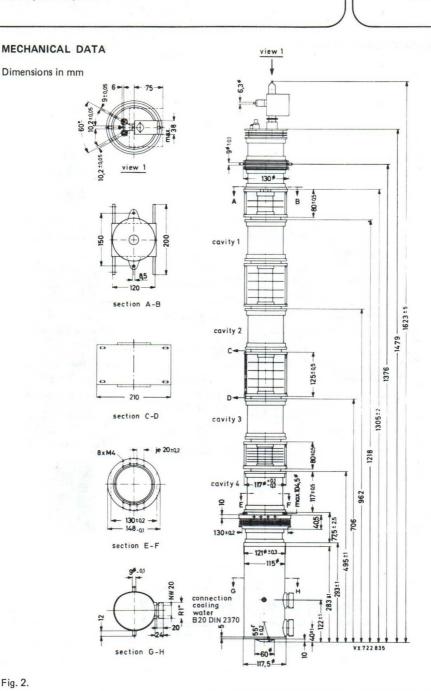
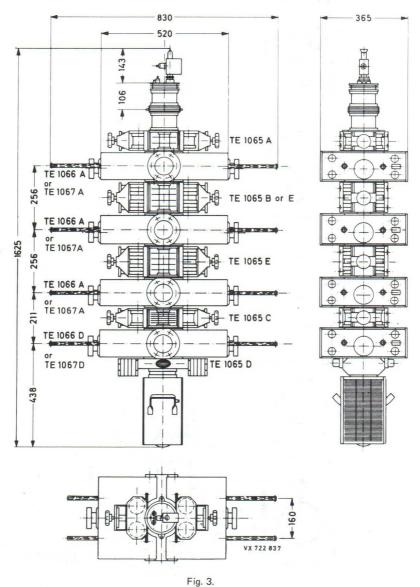



Fig. 2.

COOLING

Except collector, applicable up to an air-inlet temperature T_i of 40 $^{\circ}$ C and an altitude of 2500 m (values refer to air inlet).

Cathode base Accelerating electrode

Drift tubes 1, 2 and 3 Drift tube 4

Drift tube 5

Cavity TE1066D or TE1067D

Collector YK1001 Collector YK1002 air, $q = approx. 0.5 \text{ m}^3/\text{min}$

air, $q = approx. 0.5 \text{ m}^3/\text{min}$ air, $q = approx. 1.0 \text{ m}^3/\text{min}$ each

air, q = approx. 1.5 m³/min forced air, q = approx. 1.5 m³/min

 $(\Delta p = 900 \, Pa = 9 \, mbar)$

forced air, $q = approx. 2.0 \text{ m}^3/\text{min}$

 $(\Delta p = 900 \, Pa = 9 \, mbar)$

forced air, see cooling curves Figs 5, 6 and 7 water, see cooling curves Figs 9 and 10

MOUNTING

Vertical, cathode up. In order to prevent distortion of the magnetic focusing field ferromagnetic material should not be used within a radius of 35 cm from the tube axis. All connections should be free from strain.

MASS (net)

YK1001 YK1002 Total mass of accessories approx. 55 kg approx. 45 kg approx. 125 kg

PRODUCT SAFETY

1. X-radiation

Correct operation of the tube can be guaranteed only if a set of accessories, approved by the tube manufacturer, is used.

The operating tube generates X-rays which can penetrate the ceramic parts of the tube envelope. In order to reduce the radiation at any accessible points to an officially acceptable, non-dangerous level the tube must be shielded and any possible radiation path blocked by at least 1 mm of brass or an equivalent depth of non-magnetic X-ray absorbing material. The proper use of accessories will provide the necessary shielding.

2. R.F. radiation

R.F. power may be emitted through apertures other than the normal output coupling (for example r.f. leaks). This r.f. power may be sufficiently intense to cause danger to the human body, particularly to the eyes. Such radiation may be increased if the tube is functioning incorrectly.

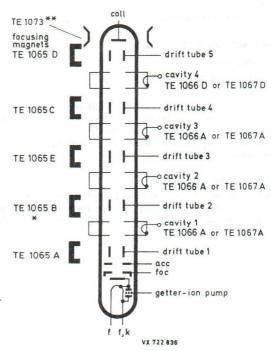
ACCESSORIES

Heater connector
Heater/cathode connector
Focusing electrode connector
Accelerating electrode connector
Collector connector
Getter ion pump connector
Magnet unit for ion pump
Set of five pairs of focusing magnets
Set of four cavities
for 470 MHz to 790 MHz

or

Set of four cavities for 700 MHz to 860 MHz

2 magnet field adaptor plates for collector (YK1001 only)**


Recommended circulators (optional) 470 to 600 MHz 600 to 800 MHz 790 to 1000 MHz type 40649 type 40649 type 40634 type 40634 type 55351 type TE1053 type TE1065 (2xA, 2xB, 2xC, 2xD, 2xE)*

type TE1067 (3xA, 1xD)

type TE1066 (3xA, 1xD)

type TE1073

2722 162 01551 (T100/IV-N) 2722 162 01561 (T100/V-N) 2722 162 03261 (T100/V-3-N)

- * If the klystron is used under TV transposer conditions replace 2xB by 2xE.
- ** Operation for vision and sound transmitter without depressed collector voltage.

Fig. 4.

max.	8.5	V
max.	-22	kV
max.	-25	kV
max. min.	7 0.5	kV kV
max.	2.3	Α
max.	-25	kV
max. min.	20 10	$k\Omega$
max. min.	700 100	V
max.	40	kW
max.	1.5	(14 dB)
max.	4.5	kV
max.	15	mA
max. max. max. max. max. max.	125 80 150 125 200 300 75 40	°C °
	max. max. max. max. max. max. min. max. min. max. max. max. max. max. max. max. max	max22 max25 max. 7 min. 0.5 max. 2.3 max25 max. 20 min. 10 max. 700 min. 100 max. 40 max. 1.5 max. 4.5 max. 15 max. 15 max. 125 max. 80 max. 150 max. 125 max. 300 max. 300 max. 75

^{*} The power supply must be preloaded with min. 10 mA at 500 V.

^{*} For limiting values of various operating conditions see next page and Fig. 11.

[▲] In safeguard this temperature limit the air outlet temperature should be measured in at least two places; one 50 mm and one 150 mm from the upper collector plate and 50 mm from the cooling fins; the cooling data of collector are minimum values.

MAXIMUM VALUES of drift tube current

For vision transmitter without level dependent cut-out threshold without depressed collector voltage	max.	80	mA	
with depressed collector voltage	max.	130	mA	
For vision transmitter with level dependent cut-out threshold without depressed collector voltage for 0 to 7 kW output power, peak sync.	max.	40	mA	
with depressed collector voltage for 0 to 7 kW output power, peak sync.	max.	60	mA	
without depressed collector voltage for full output power	max.	100	mA	
with depressed collector voltage for full output power	max.	200	mA	
For vision and sound transmitter fed from the same power supply and without level dependent cut-out threshold without depressed collector voltage	max.	100	mA	
with depressed collector voltage	max.	160	mA	
For vision and sound transmitter fed from the same power supply and with level dependent cut-out threshold without depressed collector voltage		60	A	
for 0 to 7 kW output power, peak sync.	max.	60	mA	
with depressed collector voltage for 0 to 7 kW output power, peak sync.	max.	80	mA	
without depressed collector voltage for full output power	max.	120	mA	
with depressed collector voltage for full output power	max.	250	mA	

TYPICAL OPERATING CONDITION As 11 kW vision transmitter (CCIR-G		rd)					notes
in the frequency range 470 MHz to 79	90 MH	Z					1, 2
		without	depressed voltage	with depress			
Cathode voltage		-1	18.0	-13.5		kV	3
Depressed collector voltage		Stylinda <u>.</u>	-0.5	-5.0		kV	
Accelerating electrode voltage			0	0		V	4
Neg. focusing voltage	~		400	400		V	5
Drift tube current, static	~		25	30		mA	
black level	~		40	80		mA	6
Cathode current			1.9	1.9		A	
Output power, peak sync.			11	11		kW	
Drive power see Fig. 12.							
Linearity without compensation	~		80	80		%	7
Sync. compression	<	4	5/25	45/25			8
V.S.B. suppression	<		-20	-20		dB	9
Noise with reference to black level	<		-46	-46		dB	10
Differential gain	~		5	5		deg	11
As 2.2 kW and 4.4 kW TV sound amp	olifier						
Cathode voltage		-18.0	-18.0	-13.5	-13.5	kV	3
Depressed collector voltage		-0.5	-0.5	-5.0	-5.0	kV	
Accelerating electrode voltage		-7.5	-5.5	-7.5	-5.5	kV	4
Neg. focusing voltage	~	400	400	400	400	V	5
Drift tube current	~	40	50	50	70	mA	6
Cathode current		0.7	1.0	0.7	1.0	A	
Output power		2.2	4.4	2.2	4.4	kW	
Drive power	\leq	0.5	0.5	0.5	0.5	W	
As 2.1 kW amplifier for television transposer service							
Cathode voltage				-15		kV	3
Depressed collector voltage				5.0		kV	
Neg. focusing voltage	\approx			400		V	5
Drift tube current	≈			60		mA	6
Cathode current				2.2		A	
Output power, peak sync.				2.1		kW	
Drive power see Fig. 12							
Intermodulation products	<			-51		dB	12

- With the appropriate focusing magnets TE1065, cavities TE1066 and a circulator between the driver and input cavity.
 A precorrection of the level dependent frequency response up to 2 dB must be provided.
- In case of failure the beam voltage must be switched off and made to drop below 5% of its nominal value within 500 ms of the failure.
- 3. Fluctuations of the beam voltage up to ± 3% will not damage the tube; to meet the signal-transfer quality requirements the nominal beam voltage should not vary more than ± 1%.
- 4. It is recommended that this voltage be obtained from a voltage divider between cathode and ground, which should carry a quiescent current of minimum 3 mA.
- 5. The focusing electrode voltage should be adjustable from 100 V to 500 V; a setting range from 100 V to 700 V is recommended.
- At black level, to be focused for minimum drift tube current. If necessary to obtain the required signal-transfer quality, a deviation of maximum 10% from this minimum current is permitted. The limiting value, see Fig. 11, must however, not be exceeded.
- 7. Measured with a sawtooth voltage with amplitude between 17 and 75% of the peak sync value, on which is superimposed a 4.43 MHz sinewave with a 10% peak-to-peak value.
- 8. Calculated from (1-V_{black}/V_{sync}) in / (1-V_{black}/V_{sync}) out.
- Measured with 10 to 75% modulation without compensation; V.S.B. filter between driving stage and klystron.
- 10. Produced by the klystron itself; without hum from power supplies.
- 11. Without compensation.
- 12. Without compensation, see German Bundespost 176 Pfl 2 or ARD-Pflichtenheft 5/2. Three-tone test method (vision carrier —8 dB, sound carrier —7 dB, sideband signal —16 dB with respect to peak sync = 0 dB).

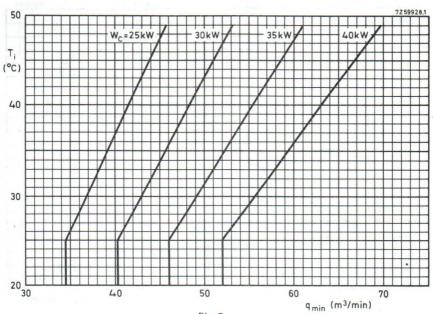


Fig. 5.

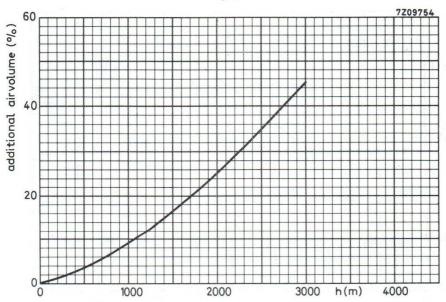


Fig. 6.

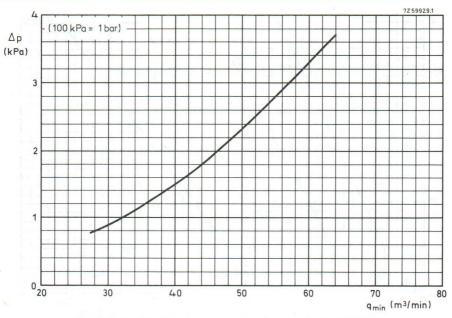


Fig. 7 Ratio of cooling air pressure to cooling air volume of YK1001.

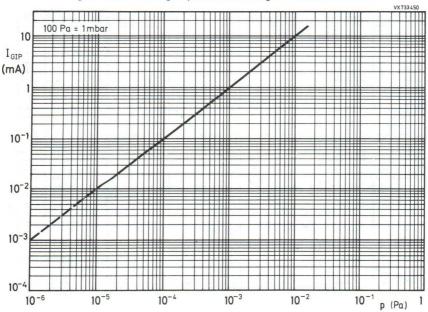


Fig. 8 Ratio of pump current to gas pressure in the klystron.

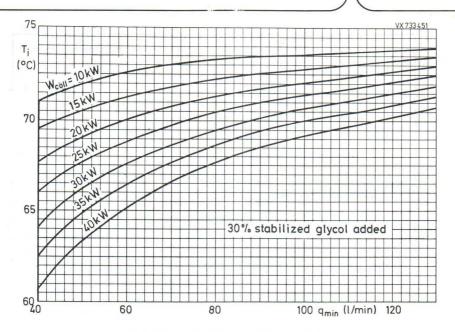


Fig. 9 Cooling curves for closed circuit cooling.

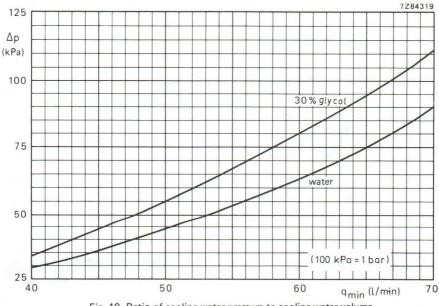


Fig. 10 Ratio of cooling water pressure to cooling water volume.

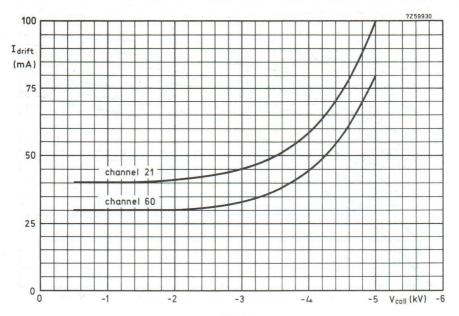


Fig. 11.

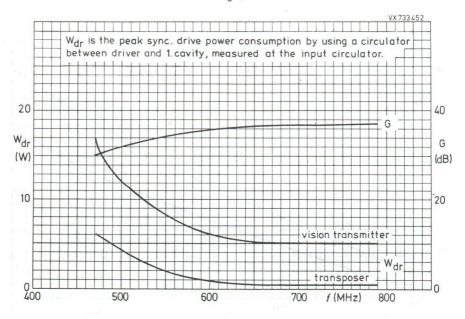


Fig. 12.

PULSED POWER KLYSTRON

Fixed frequency pulsed power klystron in metal-ceramic construction for the range 2998 ± 5 MHz, with 3 internal cavities, electromagnetic focusing, continuously operating getter-ion pump, coaxial input connector and S-band output waveguide, water cooled, intended as amplifier in linear accelerators and similar applications.

QUICK REFERENCE DATA

* 350 Pa = 3,5 mbar.

Frequency range	f	299	8 ± 5	MHz
The klystron is factory tuned to 2998 MHz but can delivered for 2993 MHz to 3003 MHz. Other frequencies on request.	or any frequenc	y within t	he ran	ge
Peak power output	Wop		6	MW
Power gain	G		30	dB
This data must be read in conjunction with GENERAL OPERAT KLYSTRONS.	IONAL RECOM	MENDA	TIONS	6 for
HEATING: indirect by a.c. or d.c.				
Cathode	oxio	le coated		
Heater voltage	V_{f}	3	to 4.6	V
Heater current, marked on each tube	If	70	to 82	A
The heater current should never exceed a peak value of 150 A or 100 A when applying a d.c. heater voltage.	when applying a	n a.c. hea	ter vo	Itage
Cold heater resistance	R _{fo}		6	$m\Omega$
Waiting time	t_W	min.	45	min
GETTER-ION PUMP POWER SUPPLY				
Pump voltage, unloaded			4	kV
Internal resistance		approx.	300	$k\Omega$
COOLING (valid for a pulse repetition rate up to 50 p.p.s.)				
Drift tubes and focusing coils	q	min.	4	I/min
	p	max.	350	Pa *
Collector	q	min.		I/min
	p	max.	350	Pa *
ACCESSORIES				
Magnet and housing for getter-ion pump	type	TE1053	A	
	and	TE1053	В	
MASS (net)	арр	rox.	110	kg

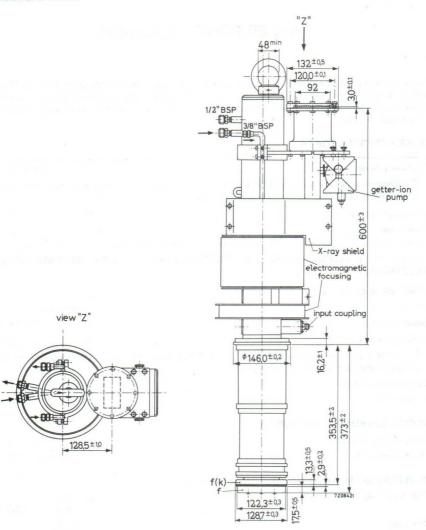


Fig. 1.

MOUNTING Vertical.

To be supported from mounting flange with cathode down. Although the collector and output cavity are provided with a lead shield, adequate additional shielding is required for protection against personal injury due to X-ray radiation.

LIMITING VALUES (Absolute maximum rating system) fo	r pulsed operation.	notes
All voltages are specified with respect to ground.		
Cathode voltage, peak	max220	kV
Cathode current, peak	max. 120	A
Beam input power, peak	max. 25	MW
R.F. input power, peak	max. 10	kW
R.F. output power, peak	max. 8	MW
Pulse repetition rate	max. 600	p.p.s.
Pulse duration	max. 3	μs
Voltage standing-wave ratio of load	max. 1.5	
Focusing magnet voltage	max. 50	V
Focusing magnet current	max. 32 min. 24	
Pump voltage	max. 4.5	kV
Pump current	max. 15	mA
Water outlet temperature	max. 75	oC
OPERATING CONDITIONS		1
Frequency	2998	MHz
Heater current		2
Cathode voltage, peak	-210	kV 3
Cathode current, peak mean	100 10	A mA
Focusing magnet voltage	40	V
Focusing magnet current	29	A 4
Pulse repetition rate	50	p.p.s. 5
Pulse duration	2.2	μs
R.F. input power	5	kW
R.F. output power,	6	MW
peak mean	0.66	

Notes

- 1. When the klystron has not been in operation for some time, conditioning might be required. This should be done by gradually increasing the cathode voltage until in each step stable operation is obtained. Stored tubes require pumping at intervals of approx. 3 months.
- 2. To be adjusted at the value marked on each tube.
- 3. For maintaining a minimum output power of 5 MW during life the cathode voltage may be increased to -215 kV.
- 4. To be adjusted for max. r.f. output power.
- 5. Data for operation at p.r.r. higher than 50 p.p.s. on request.

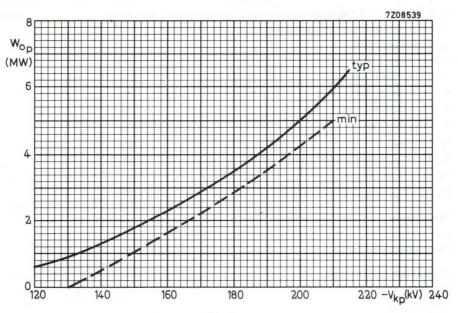


Fig. 2.

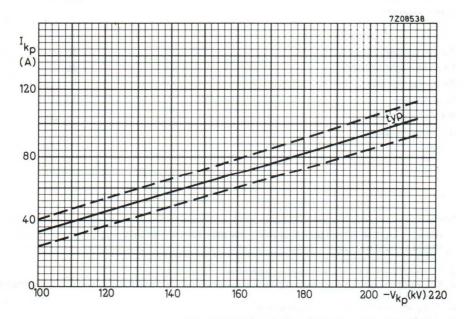


Fig. 3.

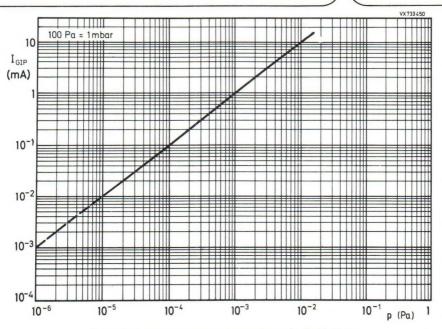
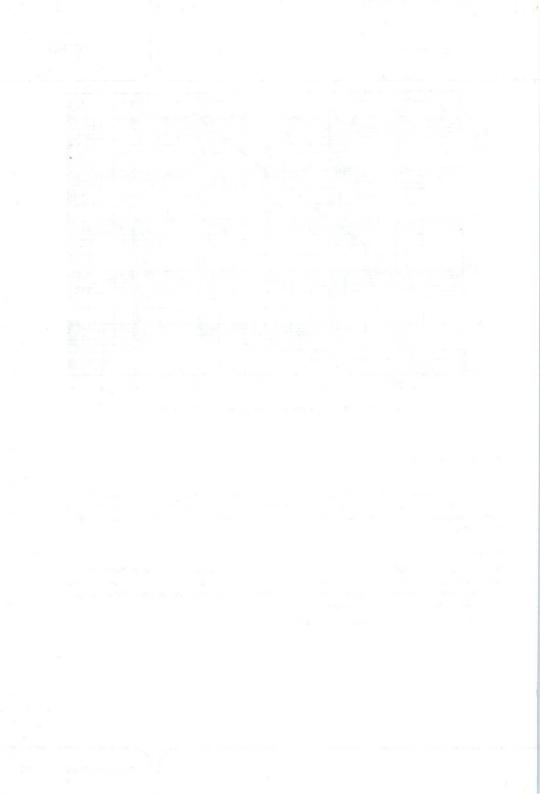


Fig. 4 Ratio of pump current to gas pressure in the klystron.

PRODUCT SAFETY


R.F. radiation

R.F. power may be emitted not only through the normal output coupling but also through other apertures (for example, r.f. leaks). This r.f. power may be sufficiently intense to cause danger to the human body, particularly to the eyes. Such radiation may be increased if the tube is functioning incorrectly.

X-radiation

A highly dangerous intensity of X-rays may be emitted by tubes operating at voltages higher than approximately 5 kV. Adequate protection (X-ray shielding) for the operator is then necessary. The emission intensity of X-rays may correspond to a value of voltage much higher than that expected from the actual value applied to the tube.

Poor focusing may result in excessive X-radiation.

U.H.F. POWER KLYSTRON

U.H.F. TV power klystron in metal-ceramic construction, with four external resonant cavities, integral permanent magnets, and incorporated getter-ion pump. The klystron is intended to be used with depressed collector voltage in 10 kW and 20 kW vision transmitters, in sound transmitters or in highpower transposers in the frequency range 470 to 860 MHz.

QUICK REFERENCE DATA

Frequency range	470 to 860 MHz
Output power, peak sync	25 kW
Cooling	forced air

This data must be read in conjunction with GENERAL OPERATIONAL RECOMMENDATIONS for KLYSTRONS.

HEATING : indired	ct by d.c.				notes	
Cathode		dispenser type				
Heater voltage vision transmitte	er	V _f	7	V	1	
sound transmitte	er	V_{f}	6.5	V	1	
Heater current		I _f ≈ 30 (2	26 to 34)	A		
Cold heater resista	nce	R _{fo} ≈	28	$m\Omega$		
Waiting time a. Heater voltage	e 7 V	t _w min.	180	s	2	
b. Stand-by	6 V vision transmitter	tw	0	S	2, 3	
c. Stand-by 5.5 t	to 6 V sound transmitter	tw	0	S	2, 3	

FOCUSING

The integral temperature-compensated coaxial permanent magnets are pre-adjusted by the tube manufacturer.

GETTER-ION PUMP SUPPLY

Pump voltage, no load condition

300 kΩ

kV

Internal resistance

If it is between 3 kV and 4.5 kV, the collector to body voltage may be used as the pump supply voltage. In this case the pump anode must be connected to body (earth) via a 300 k Ω series resistor.

- 1. During operation the heater voltage should not fluctuate more than ± 3%.
- 2. The heater current should never exceed a peak value of 65 A.
- 3. Valid after a waiting time of at least 8 min; as soon as the beam voltage is switched on, the heater voltage must be increased to the nominal value.

MECHANICAL DATA

Dimensions in mm

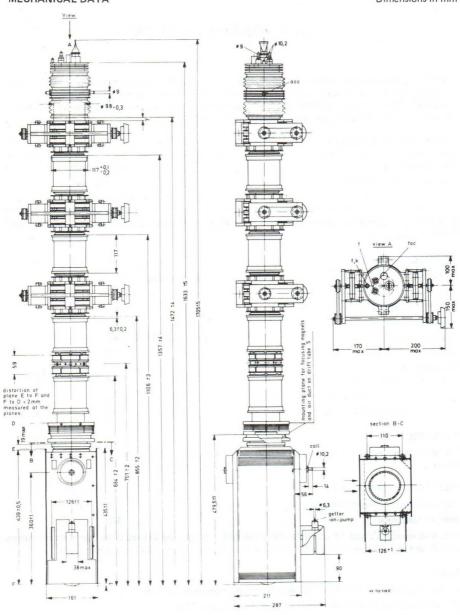


Fig. 1.

MASS AND DIMENSIONS

Klystron

net approx. 100 kg

gross approx. 200 kg

outline dimensions

of packing (cm) 205 x 79 x 66

MOUNTING

Mounting position: vertical with collector down.

To remove the tube from the magnet frame a total free height of 2.5 m, excluding hoist, is required.

COOLING

Cooling data, using the trolley TE1081

Cathode socket, drift tubes, and cavities forced air, approx. $5 \text{ m}^3/\text{min}$, $\Delta p = 800 \text{ Pa}$ (8 mbar)

Collector (60 kW dissipation) forced air, min 55 m³/min.

 $\Delta p = 2100 \, \text{Pa}$ (21 mbar), see Figs 3, 4 and 5.

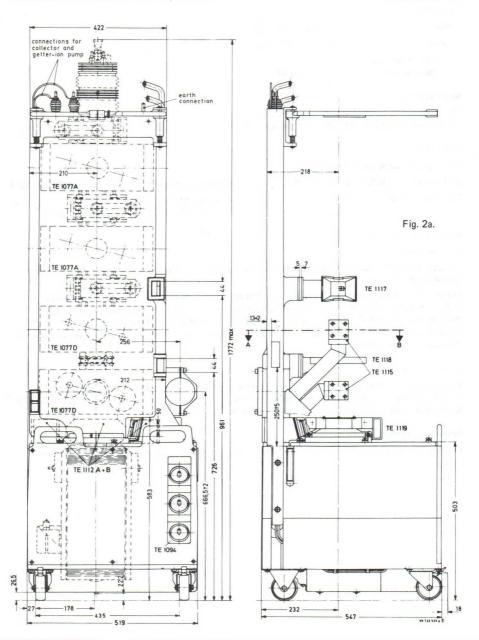
PRODUCT SAFETY

1. X-radiation

Correct operation of the tube can be guaranteed only if a set of accessories, approved by the tube manufacturer, is used.

The operating tube generates X-rays which can penetrate the ceramic parts of the tube envelope. In order to reduce the radiation at any accessible points to an officially acceptable, non-dangerous level the tube must be shielded and any possible radiation path blocked by at least 1 mm of brass or an equivalent depth of non-magnetic X-ray absorbing material. The proper use of accessories will provide the necessary shielding.

2. R.F. radiation


R.F. power may be emitted through apertures other than the normal output coupling (for example r.f. leaks). This r.f. power may be sufficiently intense to cause danger to the human body, particularly to the eyes. Such radiation may be increased if the tube is functioning incorrectly.

Instruction manual

For detailed mounting and tuning instructions see klystron instruction manual, delivered with each tube.

MECHANICAL DATA of the trolley TE1081

Dimension in mm

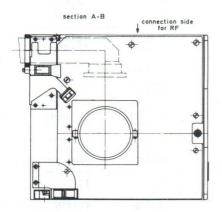
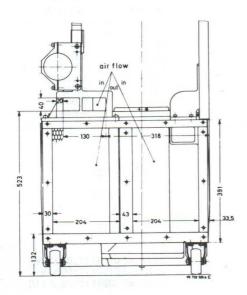



Fig.2b.

ACCESSORIES

Frequency range (MHz)	470 to 637	638 to 860
Channel	21 to 41	42 to 68
Stub	TE1089	TE1089
Cavity 1	TE1077A	TE1078A
Input coupling device	TE1083	TE1084
Cavity 2	TE1077A	TE1078A
Load coupling device	TE1085	TE1086
Cavity 3	TE1077D	TE1078D
Load coupling device	TE1085	TE1086
Adaptor flange	TE1090	TE1090
Cavity 4	TE1077D	TE1078D
Output coupling device	TE1091A	TE1092A
Magnet	TE1112A	TE1112A
for drift tube 5	TE1112B	TE1112B
Trolley	TE1081	TE1081
Air duct for cavities	TE1115	TE1115
Air duct for drift tube 3	TE1117	TE1117
Air duct for drift tube 4	TE1118	TE1118
Air duct for drift tube 5	TE1119	TE1119
Magnet for getter-ion pump	TE1053A	TE1053A
Connectors Heater Heater/cathode Focusing electrode Accelerating electrode Collector Getter-ion pump Earth	40649 40649 40634 40634 40649 40634 40649	40649 40649 40634 40634 40649 40634 40649

Special parts

Load coupling unit mating TE1077D (instead of TE1091A)	
Load coupling unit mating TE1078D (instead of TE1092A)	
Plug connection mating TE1091A and TE1092A	
Lifting device	

Recommended	circulators	(optional)
470 to 600	MHz	

470 to	600 MHz	
600 to	800 MHz	
790 to	1000 MHz	

- 1	-	11	1X /
-	_		,,,

	F 1	C	0
- 1		UC	S

T	E	1	0	9	1	B
T	E	1	1	1	3	

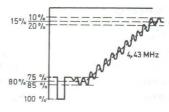
2722 162 01551 (T100/IV-N) 2722 162 01561 (T100/V-N) 2722 162 03261 (T100/V-3-N)

LIMITING VALUES (Absolute maximum rating system)

	min.		max.		notes
Heater voltage	-		8.5	V	
Ground to cathode voltage			28	kV	
Ground to the accelerator electrode voltage	0	kV	28	kV	
Ground to collector voltage	0	kV	5	kV	
Cathode to focusing electrode voltage	100	V	600	V	
Cathode current			4	A	
Accelerator electrode current	-0.2	mA	+1.5	mA	
Focusing electrode current	-0.2	mA	+3	mA	
Drift tube current static			60	mA	4, 5
dynamic			260	mA	5
Collector dissipation			65	kW	
Series resistor in accelerator electrode circuit	10	kΩ			
Return loss of load at operating frequency	14	dB			
Pump voltage, no load condition	3.0	kV	5.0	kV	
Pump current			15	mA	
Temperature of focusing magnets			70	oC	
Inlet temperature of cooling air			45	°C	
Outlet temperature of cooling air			110	°C	

- 4. Static operation (operation without output power) in vision transmitters only with beam currents < 2/3 of given value allowed (see design considerations).
- 5. A drift tube current cut-out should be provided to protect the klystron. The cut-out should have an automatic action which depends on the drive level, see Figs 6 and 7.

TYPICAL OPERATING CONDITION		001	200			notes
As 20 kW vision transmitter in acco	ordance	with CCI	R-G standard,			6
with depressed collector voltage					*	
Operating conditions						7
Frequency range	470 t	o 640	470 to 790	790 to 86	0 MHz	
Channel	21 t	o 41	21 to 60	61 to 6	8	
Collector to cathode voltage	16.5	18	20.0	20.0	kV	8
Cathode current	3.6	3.3	3.0	3.1	Α	
Ground to collector voltage	4.0	4.0	4.0	4.5	kV	
Drift tube current (black level)	120	100	70	70	mA	
Ground to accelerator electrode voltage	0	≈ 3	≈ 6	≈ 6	kV	
D.C. input power	59	59	60	62	kW	
Cathode to focusing electrode voltage			300 (100 to 6	00)	V	9
Drive power see Fig. 10.						
Performance						
Output power, peak sync			22		kW	10
		min.	typ.	max.		
Sync. compression		-		40/25		11
V.S.B. suppression		23	25		dB	12
Noise ratio, with reference to black level		48	> 50		dB	13
Linearity 10/75		0.75	0.8			14
Differential gain (10/85 at 4.43 MHz)		0.75	0.85			15
Differential phase (10/85 at 4.43 MHz)			+10/-3	+15/-5	deg	15, 1
Variation in response characteristic			0.25	0.5	٦D	17
in the double-sideband region in the single-sideband region			0.25	0.5	dB	17
Ripple of response characteristic			0.4	0.6	dB	18
(white level 10/20) Maximum output power				0.3	dB	
			25	1	kW	19


TYPICAL OPERATING CONDITION	S (continued)				notes
As 20 kW vision transmitter in accorda	nce with CCI	R-G standa	rd.		6
without depressed collector voltage			,		
Operating conditions					7
Frequency range		470 to	860	MHz	
Channel		21 to	68		
Collector to cathode			20		
voltage		19.5 to	23	kV	8
Cathode current		3.05 to	2.6	A	
Ground to collector voltage		0		kV	
Drift tube current (black level)		80 to	40	mA	
Ground to accelerator electrode voltage		1.5 to	6.5	kV	
D.C. input power		60		kW	
Cathode to focusing electrode voltage		300 (100	to 600)	V	9
Drive power see Fig. 10.		,	,		
Performance					
Output power, peak sync		22		kW	10
	min.	typ.	max.		
Sync. compression			52/26		11
V.S.B. suppression	23	25		dB	12
Noise ratio, with reference	40				
to black level	48	> 50		dB	13
Linearity 10/75	0.65	0.75			14
Differential gain (10/85 at 4.43 MHz)	0.65	0.75			15
Differential phase (10/85 at 4.43 MHz)		+12/-3	+15/-5	deg	15, 16
Variation in response characteristic					
as a function of power level		0.05	0.5	I.D.	47
in the double-sideband region in the single-sideband region		0.25	0.5	dB dB	17 18
Ripple of response characteristic (white level 10/20)			0.3	dB	
Maximum output power	22	23	0.5	kW	19
Efficiency		37		%	
		3,	1	, 0	

TYPICAL OPERATING CONDIT	IONS (continued)				notes
As 10 kW vision transmitter in acc					6
Operating conditions	ordance with CCII	n-G standard			7
Frequency range	470 to 640	470 to 790	790 to 860) MHz	
Channel	21 to 41	21 to 60			
Collector to cathode	2110 41	2110 00	0110 00	,	
voltage	15.0	16.0	16.0	kV	8
Cathode current	2.2	2.1	2.2	Α	
Ground to collector voltage	4.0	4.0	4.5	kV	
Drift tube current (black level)	60	50	50	mA	
Ground accelerator electrode voltage	≈ 4.0	≈ 5.5	≈ 6.0	kV	
D.C. input power	33	33.5	35	kW	
Cathode to focusing electrode voltage		300 (100 to 600))	V	9
Drive power see Fig. 10.					
0. (10
Performance		4.4			10
Output power, peak sync		11		kW	
S	min.	typ.	max.		11
Sync. compression	23	25	40/25	-ID	11 12
V.S.B. suppression	23	25		dB	12
Noise ratio, with reference to black level	48	> 50		dB	13
Linearity 10/75	0.75	0.8			14
Differential gain (10/85 at 4.43 MHz)	0.75	0.85			15
Differential phase (10/85 at 4.43 MHz)		+10/-3	+15/-5	deg	15, 16
Variation in response characteristic as a function of power level			41		
in the double-sideband region in the single-sideband region		0.25 0.4	0.5 0.6	dB dB	17 18
Ripple of response characteristic (white level 10/20)			0.3	dB	
Maximum output power		12.5	1.50	kW	19
Efficiency		33	11 11 11 11 11	%	

TYPICAL OPERATING CONDITION	ONS (continued)			notes
As sound transmitter in accordance			arrier operation)	6
R.F. setting			arrier operation,	
Cavity 4 Cavity 1 Cavity 2 Cavity 3	on sound carri	er frequency er frequency -0. er frequency +0. er frequency min and load are not r	5 MHz, . +3 MHz,	
Double-humped resonance curve sla	$ack \leq -0.5 dB$			
Operation with high voltage collect	or to cathode			
with depressed collector voltage				7
Frequency range	470 to 640	470 to 790	790 to 860	MHz
Channel	21 to 41	21 to 60	61 to 68	
Collector to cathode voltage	16.5 18	20.0	20.0	kV
Ground to collector voltage	4.0 4.0	4.0	4.5	kV
Cathode to focusing electrode voltage	100 to 600	100 to 600	100 to 600	٧
Driving power <	0.5	0.5	0.5	W
Ground to accelerator electrode voltage	10.5 12.5	14.0 16.0	14.5 16.5	kV
Cathode current	1.1 0.8	1.0 0.7	1.0 0.7	A 20
Output power	4.4 2.2	4.4 2.2	4.4 2.2	kW
without depressed collector voltage				
Frequency range		470 to 860		MHz
Channels		21 to 68		
Collector to cathode voltage		19.5 to 23		kV
Ground to collector voltage		0		kV
Cathode to focusing electrode voltage		100 to 600		V
Driving power		≤ 1		W
Ground to accelerator electrode voltage	11.5 to 15.5		13 to 17	kV
Cathode current	0.8 to 0.7		0.6 to 0.5	A 20
Output power	2.2		1.1	kW

TYPICAL OPERATING	CONDITIO	ONS (cor	ntinued)						notes
As sound transmitter (c	ontinued)								6
Operation with low vol	tage collecto	r to cath	ode						7
with depressed collecto	r voltage								
Frequency range		470 to	640	470 to	790	790 to	860	MHz	
Channel		21 to	41	21 to	60	61 to	68		
Collector to cathode voltage		15.0		16.0		16.0		kV	
Ground to collector voltage		4.0		4.0		4.5		kV	
Cathode to focusing electrode voltage		100 to	600	100 to	600	100 to	600	V	
Driving power		≤ 0.5		≤ 0.5		≤ 0.5		W	
Ground to accelerator electrode voltage		≈ 0.9	≈10.5	≈12.5	≈13.5	≈13.0	≈14.0	kV	
Cathode current		0.8	0.6	0.65	0.5	0.65	0.5	Α	20
Output power		2.2	1.1	2.2	1.1	2.2	1.1	kW	

- 6. With stated accessories; in case of failure the beam voltage must be switched-off and made to drop below 5% of its nominal value within 500 ms of the failure.
- For optimum performance one of these settings has to be chosen in accordance with the transmitter manual.
- 8. Fluctuations up to \pm 3% will not damage the tube; to obtain a good signal transfer quality the beam voltage should not vary more than \pm 1%.
- 9. To be adjusted for the specified cathode current.
- 10. The signal transfer quality is measured with matched load (VSWR ≤ 1.05).
- 11. Calculated from (1-V_{black}/V_{sync})_{in}/(1-V_{black}/V_{sync})_{out}
- Measured with 10 to 75% modulation without compensation; V.S.B. filter between driving stage and klystron.
- 13. Produced by the klystron itself; without hum from power supplies.
- 14. Measured with a staircase signal of 10 to 75% of the peak sync value.
- 15. Measured with a sawtooth voltage with an amplitude between 15 and 80% of the peak sync. value on which is superimposed a 4.43 MHz sinewave with a 10% peak to peak value.
- 16. Phase difference to burst signal.
- With respect to ± 0.5 MHz about the carrier frequency.
- 18. With respect to specified tolerance range.
- With increased driving power under the given operating conditions, without guarantee for signal transfer quality.
- Cathode current adjusted by accelerating electrode voltage (coarse), and focusing electrode voltage (fine).

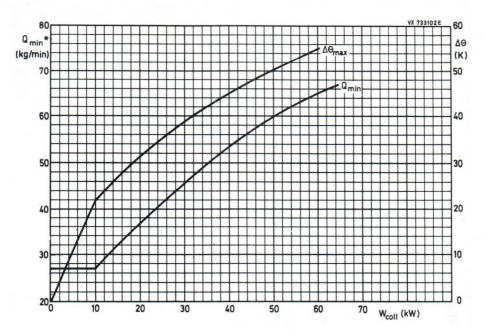
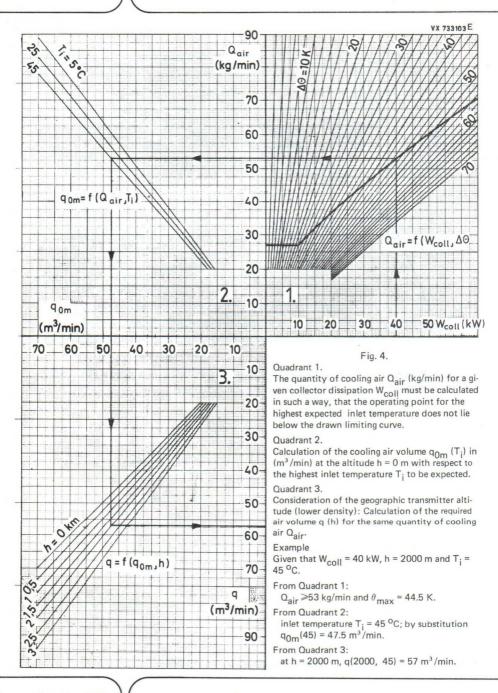



Fig. 3 Required quantity of cooling air Q_{min} for the inlet temperature T_i = 25 °C and relative temperature difference $\Delta\theta$ versus the collector dissipation W_{coll} .

 $^{^{*}}$ A normal cubic metre (at 1033 mbar, 15 $^{\rm O}$ C) corresponds to 1.226 kg.

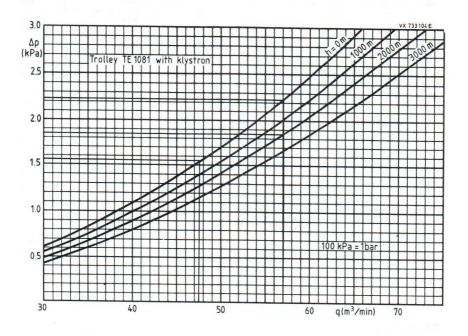


Fig. 5 Calculation of the pressure drop Δp between air inlet and air outlet at the trolley TE1081 as a function of cooling air volume q for selection of the correct blower.

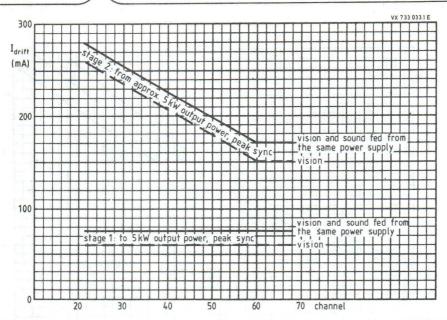


Fig. 6 Drift tube current cut-out at operation with depressed collector voltage for 20 kW transmitter.

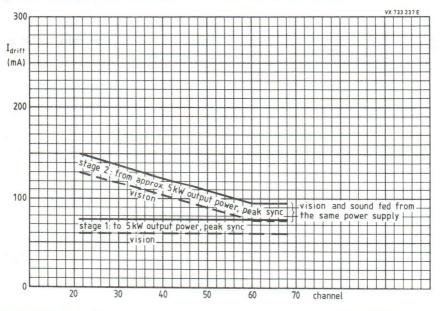


Fig. 7 Drift tube current cut-out at operation without depressed collector voltage for 20 kW transmitter.

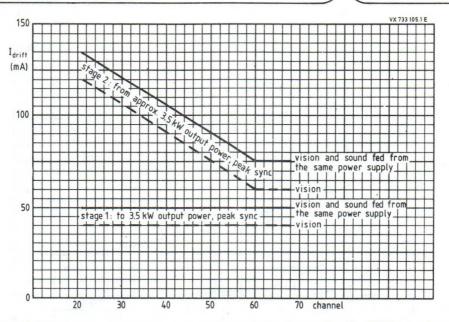
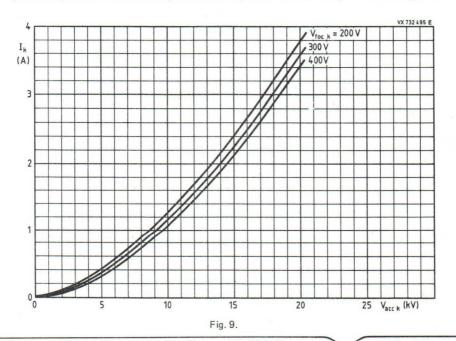



Fig. 8 Drift tube current cut-out at operation with depressed collector voltage for 10 kW transmitter.

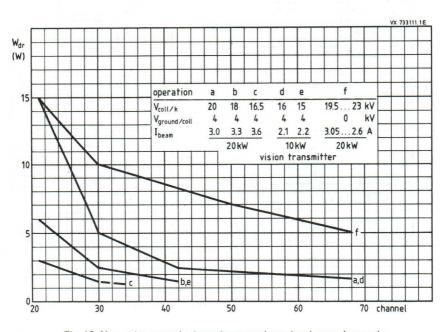


Fig. 10 Max. drive power in dependence on channel and operation mode.

DESIGN CONSIDERATIONS FOR POWER SUPPLIES AND SAFETY CIRCUITS

1. Power supplies

	Range ¹)		Internal resistance	Hum
Heater voltage	6.5 to 8.0 V (26 to 36 A)		2)	Corresponding to non-smoothed three-phase, full- wave rectifier
Cathode to focusing electrode voltage	100 to 600 V (-0.2 to +3 mA)		91	< 0.1%
Ground to collector voltage	0 or 4.5/ 4.0/ 3,5 kV 3) (500 mA mean, 1 A peak)		0 or 300 to 600 Ω	< 0.1%
Collector to ⁴) cathode voltage	Operation without depressed collector voltage	collector voltage	u v	1
20 kW operation	19.5 to 23 kV (65 kW)	16.5 kV 18.0 kV (65 kW) 20.0 kV 15.0 kV	300 to 600 Ω	< 0.1%
		16.0 kV (35 kW)	7-	121
Ground to accelerator electrode voltage		1.	see Fig. 9.	
Getter-ion pump to cathode voltage 5)	voltage, unloaded (load up to 15 mA		300 kΩ	

- 1) Maximum allowable deviation from nominal or set values:
 - a) ±2% during adjustment, if the published performance is to be attained,
 - b) ±1% fluctuation of the set values during operation to maintain the performance,
 - c) during operation, deviations not exceeding ±3% of the set values will not damage the tube.
- 2) The heater current should never exceed a peak value of 65 A.
- 3) At operation with depressed collector voltage a capacitor of 0.5 µF must be installed near the collector connection of the klystron and the trolley between feed line and ground.
- 4) An additional tap for approx. 500 V to the given voltages is recommended.
- ⁵) Needed for operation without depressed collector voltage.

2. Safety circuits

The safety circuits must operate in any one of the following cases:

a) The cut-out threshold of the drift tube current is exceeded. Dependent on the peak output power this cut-out should operate in two stages, see Figs 6 and 7.

DESIGN CONSIDERATIONS YK 1151

- b) The set collector or cathode current is exceeded by more than 30 % (max. 400 mA).
- c) The air volume for collector cooling falls below the initial value for a longer period (see data sheet by cooling).
- d) The cooling air for drift tubes 3, 4 and 5, cavity 4, and cathode terminals fails (checked by a vane or equivalent device).
- e) The set max, temperature on the contact thermometers of the klystron is exceeded.

Set temperatures of the probe assemblies are:

	Probe 1 (top)	Probe 2 (middle)	Probe 3 (bottom)
10 kW Vision	80 °C	80 °C	80 °C
10 kW Sound	65 °C	65 °C	65 °C
20 kW Vision	90 °C	110 °C	110 °C
20 kW Sound	65 °C	65 °C	65 °C

- f) The return loss is lower 14 dB (VSWR ≥ 1.5).
- g) The pump operating current exceeds 50 μ A.

3. Operation without output power

Static operation (operation without output power) in vision transmitters is not allowed at beam currents > 2/3 of the given value. Without driving signal the beam current must be reduced or the tube switched-off.

4. Switching-on and switching-off procedures

- a) Switching-on sequence:
 - 1. accelerating electrode at cathode potential,
 - 2. cooling air,
 - 3. ground to collector voltage,
 - 4. heater voltage and cathode to focusing electrode voltage.

Steps 1 to 4 can be simultaneous.

- 5. waiting time.
- 6. collector to cathode voltage,
- 7. ground to accelerator electrode voltage.

b) Switching-off sequence:

- 1. accelerating electrode at cathode potential,
- 2. all other voltages and cooling simultaneously.

c) Switching-off sequence when the safety circuits operate:

- 1. accelerating electrode at cathode potential,
- 2. cathode-to-collector voltage.

For repeated switching-on (repeating): see a) 6 and 7.

In case of failure the following voltages must be switched-off and made to drop below 5% of their nominal value:

accelerating electrode-to-body voltage and cathode-to-collector voltage within 500 ms, collector-to-body voltage within 1 s.

It is recommended to start this drop 200 ms after occurrence of the failure.

5. Waiting time after short interruptions of operation

Interruption of the heater voltage	Required waiting time	{	vision $V_f = 7 V$ sound $V_f = 6.5 V$
0 to 30 s	0 s		
30 to 60 s	30 s		
60 to 90 s	60 s		
>90 s	180 s		

6. Focusing

- a) The tube is pre-focused by the tube manufacturer.
- b) For final focusing see manual.

7. Cooling

- a) The cooling of the cathode socket, accelerating electrode, drift tubes, and cavities must be monitored.
- b) The air volume of the collector cooling and, dependent on it, the temperature distribution at the air outlet, must be monitored at minimum three points.
- Also during stand-by the cathode socket must be cooled and the getter-ion pump kept in operation.

8. Mounting

a) The r.f. connectors for operation have the following dimensions:

Stub	7/16
Input coupling device cavity 1	7/16
Output coupling device cavities 2 and 3	7/16
Output coupling device cavity 4	3 1/8"

- b) Forces on klystron terminals max. 10 N. Bending moment max. 1 Nm.
- c) The coaxial magnets must not be removed from the klystron.
- d) In order to prevent distortion of the magnetic focusing field, ferromagnetic material should not be applied within a radius of 35 cm from the tube axis.
 Using the trolley TE1081. No parts should be mounted on or within the trolley and ferromagnetic parts in the trolley are not allowed.
- e) Magnetic stray fields, e.g. from transformers, coils, etc., must not exceed 50 μT (0.5 gauss) at the surface of the klystron.
- f) It is recommended to use non-magnetic material for doors of cabinets containing output stages, if these doors must be closed after focusing.

9. Storage and transport

- a) In cases of prolonged storage, each klystron must be checked for vacuum at least every 6 months and pumped if necessary.
 - It is recommended to check every 3 months (the heater voltage need not switched-on).
- b) All klystrons are insured during delivery transportation.

Each tube must be inspected for damage within 7 days of delivery:

- 1. Visual inspection of pack and tube.
- 2. Vacuum inspection with the getter-ion pump (without heating), the pump current must decrease to less than 10 μ A within 15 min.

U.H.F. POWER KLYSTRONS

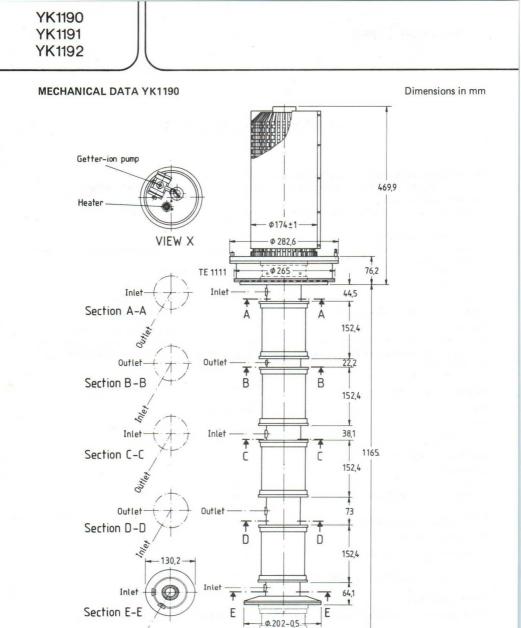
For u.h.f. band IV/V vision transmitters and sound transmitters.

Metal-ceramic construction, four external cavities, electromagnetic focusing and a high-stability dispenser type cathode.

Suitable for vapour, vapour-condensation or water cooling.

QUICK REFERENCE DATA

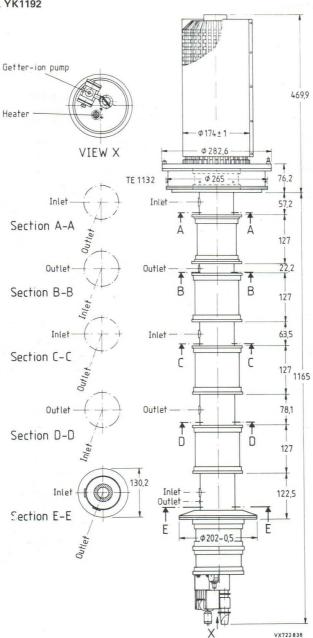
Frequency range		
YK1190	470 to 610	MHz
YK1191	590 to 720	MHz
YK1192	710 to 860	MHz
Output power as vision transmitter	40	kW
Cooling	vapour, vapour con	densation, or water


This data must be read in conjunction with GENERAL OPERATIONAL RECOMMENDATIONS for KLYSTRONS.

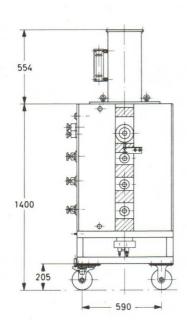
HEATING: indirect by d.c.					notes
Cathode	disp	enser type			
Heater voltage	V_{f}	≈	8.5	V ± 3 %	
Heater current	l _f	≈	22 to 27	Α	1
Cold heater resistance	R _{fo}	~	30	$m\Omega$	
Waiting time at $V_f = 8.5 \text{ V}$ at $V_f = 6.0 \text{ V}$ (black heat)	t _w	min. min.	300 0	s s	2
FOCUSING: electromagnetic					
Focusing coil current			9 to 12	Α	
Resistance of focusing coils cold (20 °C) operating at an ambient temperature of 20 °C		<	7.2 to 9.5 11	Ω	

BEAM CONTROL

The accelerator electrode voltage allows adjustment of the beam current between 0 and 100%.


GETTER-ION PUMP SUPPLY			3
Pump voltage, no-load condition	3 to 4	kV	
Internal resistance of supply	300	kΩ	

VX722807


Fig. 1.

YK1191, YK1192

Mechanical outlines of trolley

Dimensions in mm

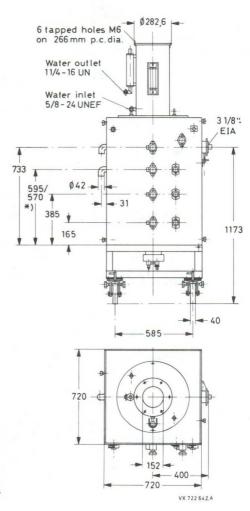


Fig. 3.

^{*} YK 1190 = 570 mm. YK 1191/92 = 595 mm.

COOLING

Cathode socket

accelerator electrode air; $q \approx 0.15 \text{ m}^3/\text{min}$, $T_i \text{ max}$. 40 °C

Collector vapour (with boiler TE1110), note 4 volume of water converted to steam: 27 cm³/min

per kW collector dissipation resulting in 43 l/min

steam per kW collector dissipation

water or vapour condensation (with cooler

TE1194) q = 35 to 60 l/min, T_0 max $80 \text{ }^{0}\text{C}$,

Drift tubes water: rate of flow to drift tubes and collector

connected in series $q \approx 9 \text{ l/min, T; max. } 80 \text{ °C,}$

 $\Delta p = 200 \text{ kPa} (2 \text{ bar})$

Cavities 3 and 4 forced air; $q = 1.5 \text{ m}^3/\text{min}$, $\Delta p = 250 \text{ Pa}$ (2.5 mbar)

T; max. 45 °C

MASS AND DIMENSIONS

Klystron

net approx. 80 kg gross approx. 230 kg outline dimensions

outline dimensions
of packing (cm)

Cavities

Approx. 45 kg

Magnet frame with coils

Approx. 885 kg

MOUNTING

Mounting position: vertical with collector up.

To remove the tube from the magnet frame a total free height of 3.5 m, excluding hoist, is required.

PRODUCT SAFETY

1. X-radiation

Correct operation of the tube can be guaranteed only if a set of accessories, approved by the tube manufacturer, is used.

The operating tube generates X-rays which can penetrate the ceramic parts of the tube envelope. In order to reduce the radiation at any accessible points to an officially acceptable, non-dangerous level the tube must be shielded and any possible radiation path blocked by at least 1 mm of brass or an equivalent depth of non-magnetic X-ray absorbing material. The proper use of accessories will provide the necessary shielding.

2. R.F. radiation

R.F. power may be emitted through apertures other than the normal output coupling (for example r.f. leaks). This r.f. power may be sufficiently intense to cause danger to the human body, particularly to the eyes. Such radiation may be increased if the tube is functioning incorrectly.

Instruction manual

For detailed mounting and tuning instructions see klystron instruction manual, delivered with each tube.

ACCESSORIES (note 5)

Each tube is delivered with the following factory fitted accessories:

	YI	<1190		YK1191		YK1192
Collector radiation suppressor	TE	1111		TE1132		TE1195
Accelerator electrode ring	TE	1141		TE1141		TE1141
Cathode ring	TE	1142		TE1142		TE1142
	or TE	1142B	or	TE1142B	or	TE1142B
Set of sealing rings	TE	1147		TE1147		TE1147
A. Accessories to be ordered separately w	hen replacin	a equivalent o	ther bra	and types		
Magnet flux ring		1138		TE1138		
Spark gap		1140		TE1140		
Set of connectors (heater, cathode,	1			121110		
acc. electrode, getter-ion pump)	TE	1146		TE1146		TE1146
B. Accessories required for first equipment	t					
Magnet flux ring		1138		TE1138		TE1138
Spark gap	TE	1140		TE1140		TE1140
Set of connectors (heater, cathode,						
acc. electrode, getter-ion pump)	TE	1146		TE1146		TE1146
Extension pipes	6 x TE	1133A	6 >	x TE1133A	6 >	TE1133A
for drift tubes	2 x TE	1133B	2 >	x TE1133B	2 >	TE1133B
Water interconnecting pipes between dr						Talls My
T ₁ - T ₂		1134A		TE1135A		TE1135A
T ₂ - T ₃		1134B		TE1135B		TE1135B TE1135C
T ₃ - T ₄		1134C 1134D		TE1135C TE1135D		TE1135D
T ₄ - T ₅	16	11340		1E1135D		1511390
Flexible water pipes						
between tube and boiler for vapour cooling	т	1145A		TE1145A		TE1145A
between frame and tube	10.00	1145A 1145B		TE1145A		TE1145B
tube outlet for water cooling	1000	1145C		TE1145C		TE1145C
Boiler for vapour cooling		1110		TE1110		TE1110
or	- 11	.1110		ILITIO		121110
Cooler for water cooling	TE	1194		TE1194		TE1194
Cavities	3 x TE	1121A	3	x TE1098A	3)	TE1191A
		1121D		x TE1098D		TE1191B
Input coupler	TE	1122A		TE1102		TE1102
Load coupler for cavities 2 and 3	2 x TE	1122B	2	x TE1102	2 :	TE1102
Blanking plates	3 x TE	1157	3	x TE1157	3 :	TE1157
Output coupler for cavity 4	TE	1123		TE1105		TE1196
Arc detector		1107		TE1107		TE1107
Magnet frame with coils	TE	1108		TE1108		TE1108

ACCESSORIES (continued)		YK1290		YK1291		YK1292
C. Spare and optional parts						
Collector radiation suppressor		TE1111		TE1132		TE1195
Accelerator electrode ring		TE1141		TE1141		TE1141
Cathode ring		TE1142		TE1142		TE1142
	or	TE1142B	or	TE1142B	or	TE1142B
Set of connectors (heater, cathode, acc. electrode, getter-ion pump)		TE1146		TE1146		TE1146
Set of sealing rings		TE1147		TE1147		TE1147
Water protection shield		TE1139		TE1139		TE1139
Recommended circulators 470 to 600 MHz 600 to 800 MHz 790 to 1000 MHz		2722 162 01 2722 162 01 2722 162 03	561 (T	100/V-N)		

LIMITING VALUES (Absolute maximum rating system)

Heater voltage	max.	9.5	V	
Beam voltage	max.	23	kV	
Cold cathode voltage	max.	-27	kV	
Beam current	max.	7	A	
Body current	max.	150	mA	
Accelerator electrode current	max.	6	mA	note 7
Collector dissipation	max.	150	kW	
Load VSWR	max.	1.5		
Temperature of tube envelope	max.	175	oC	((0)
Static pressure in the cooling system	max.	600	kPa	(6 bar)

TYPICAL OPERATING CONDITIONS: YK1190/YK1191

As 40 kW vision transmitter (CCIR-G standard)

	gain-tuned operation		ncy-tuned n (example	es)	
Output power, peak sync.	45	45	45	kW	
Beam voltage	22	20.5	22	kV	
Beam current	6.3	5.7	4.8	A	
Accelerator to cathode voltage	22	20.5	18	kV	
Body current without drive at 45 kW peak sync., black level	15 30	15 40	15 40	mA mA	
Focusing coil current	10.5	10.5	10.0	Α	
Drive power, peak sync. YK1190 - channel 21 channel 38	2 1.5	10 7	6	W	note 9
YK1191 - channel 37 channel 51	1.5 1	7 5	3	W	note 9
Bandwidth at -1 dB points	8	8	8	MHz	note 10
Differential gain	80	75	70	%	note 11
Differential phase	6	7	10	deg	note 11
Linearity	70	65	60	%	note 12
Operating efficiency	32	38.5	42.5	%	
Saturation output power	55	60	46.5	kW	
Saturation efficiency	40	43	44	%	
As 4 kW/8 kW sound transmitter (CCIR-G stand	ard)				
Output power	4.5	9 4.5	9	kW	
Beam voltage	20.5	20.5 22	22	kV	note 6
Beam current	1.25	1.5 1.15	1.4	Α	
Accelerator cathode voltage	≈ 7.5 ≈	8.5 ≈ 7	≈ 8	kV	note 13
Focusing coil current		9		Α	
Drive power		1.5		W	note 9
Bandwidth at -1 dB points		1		MHz	

TYPICAL OPERATING CONDITIONS: YK1192				
As 40 kW vision transmitter (CCIR-G standard)				
Output power, peak sync.	4	15	kW	
Beam voltage	2	23	kV	note 6
Beam current	4	.6	Α	note 8
Accelerator to cathode voltage	of a	18	kV	
Body current without drive at 45 kW peak sync., black level		15	mA mA	
Focusing coil current	100	10	A	
Drive power, peak sync.		2	W	note 9
Bandwidth at -1 dB points		8	MHz	note 10
Differential gain		70	%	note 11
Differential phase		10	deg	note 11
Linearity	(60	%	note 12
Operating efficiency	42	.5	%	
Saturation output power	46	.5	kW	
Saturation efficiency		14	%	
As 4 kW/8 kW sound transmitter (CCIR-G standard)				
Output power	4.5	9	kW	
Beam voltage	23	23	kV	note 6
Beam current	1.1	1.3	A	
Accelerator to cathode voltage	≈ 7	≈ 8	kV	note 13
Focusing coil current	. 7 04	9	Α	
Drive power	1.5	5	W	note 9
Bandwidth at -1 dB points	engi e	1	MHz	

Notes

- 1. When switching on the heater voltage, the heater current must never exceed a peak value of 65 A.
- 2. In case of a mains failure an interruption up to 30 s can be tolerated without new waiting time. After min. 10 minutes of stand-by heating time at 6 V (black heat), the beam current may be switched on; the heater voltage must be increased to its nominal value of 8.5 V simultaneously. Continuous black heat periods should not exceed two weeks and should be separated by similar periods of rest or full operation.
- To ensure that the klystron is always ready for operation, operate the ion getter pump at least every 6 months (preferably every 3 months) during storage. For details see klystron instruction manual.
- In order to avoid corrosion of the cooling system, coolant water must be pure and deionized (resistivity min. 100 kΩ·cm).
- 5. Correct operation of the tube can be guaranteed only if a set of accessories, approved by the tube manufacturer, is used. The operating tube generates X-rays which can penetrate the ceramic parts of the tube envelope. In order to reduce the radiation at any accessible points to an officially admissible, non-dangerous level the tube must be shielded and any possible radiation path must be blocked by at least 1 mm of brass or an equivalent portion of non-magnetic X-ray absorbing material. The proper use of our accessory parts will provide the necessary shielding.
- 6. Static pressure in the body-cooling system and in the water-cooling jacket TE1194.
- 7. The accelerator electrode voltage must not be positive with respect to the body (ground).
- 8. If the accelerator electrode is connected to the body (ground) via 10 k Ω resistor, the beam current is within \pm 5% of the value given in the graph of Fig. 4.
- 9. The drive power is defined as the power delivered to a matched load.
- Variation of the signal level between black and white at any sideband frequency may cause a reaction of the peak sync. level. Proper tube design limits this reaction to less than 0.5 dB.
- 11. Measured with a sawtooth signal from black level to peak white occuring at each line and superimposed colour subcarrier with a 10 % peak to peak amplitude.
- 12. Measured with a ten-step staircase signal from black level to peak with occuring at each line.
- A voltage divider for adjusting the beam current should be dimensioned on the basis of an accelerator electrode current of max. 1.5 mA.

YK1190 YK1191 YK1192

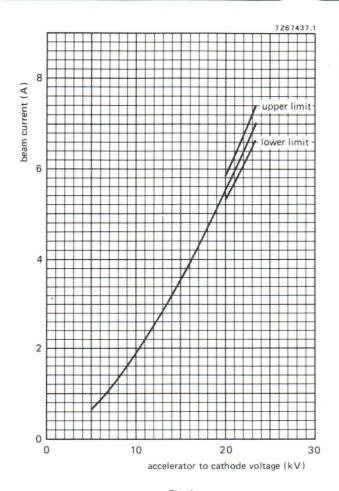
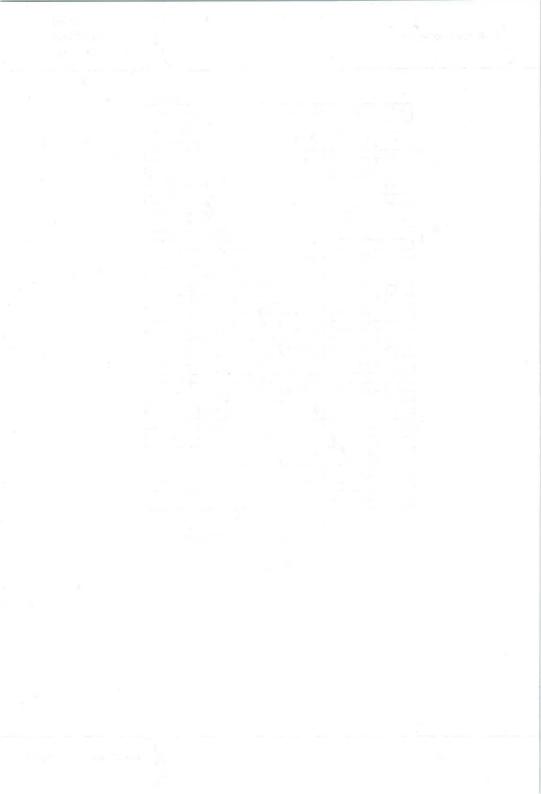



Fig. 4.

U.H.F. POWER KLYSTRON

Optionally vapour, vapour condensation, or water-cooled power klystron in metal-ceramic construction for 60 kW CW amplifiers. The tube has four external cavities, electromagnetic focusing and a high stability dispenser-type cathode.

QUICK REFERENCE DATA

Frequency range	800 MHz
Cooling	vapour, vapour condensation, or water

This data must be read in conjunction with GENERAL OPERATIONAL RECOMMENDATIONS for KLYSTRONS.

HEATING: indirect by d.c.					notes
Cathode	disp	enser type			
Heater voltage	V_{f}	~	8.5	V ±3 %	
Heater current	If	\approx	22 to 27	Α	1
Cold heater resistance	Rfo	≈	30	$m\Omega$	
Waiting time at $V_f = 8.5 \text{ V}$ at $V_f = 6.0 \text{ V}$ (black heat)	t _w	min. min.	300		2
FOCUSING: electromagnetic					
Focusing coil current			9 to 12	Α	
Resistance of focusing coils cold (20 °C) operating at an ambient temperature of 20 °C		€	7.2 to 9.5 11	Ω	

BEAM CONTROL

The accelerator electrode voltage allows adjustment of the beam current between 0 and 100%.

		3
3 to 4	kV	
300	$k\Omega$	
		3 to 4 kV 300 kΩ

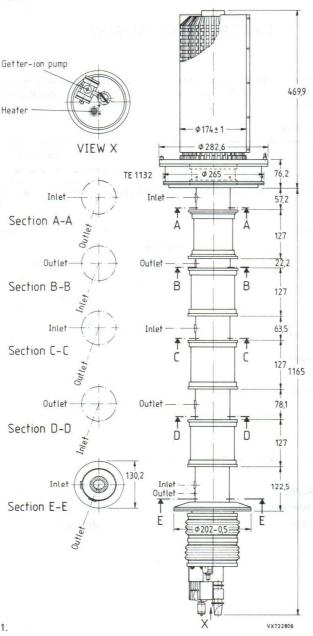
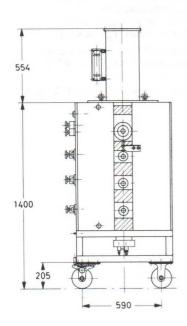
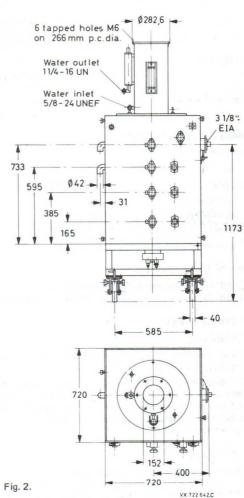




Fig. 1.

Mechanical outlines of trolley

Dimensions in mm

COOLING

Cathode socket

accelerator electrode air; $q \approx 0.15 \text{ m}^3/\text{min}$, T_i max. 40 °C

Collector vapour (with boiler TE1110), note 4

volume of water converted to steam: 27 cm³/min

per kW collector dissipation resulting in 43 l/min

steam per kW collector dissipation

water or vapour condensation (with cooler TE1194) q = 35 to $60 \, l/min$, $T_0 \, max \, 80 \, l/min$

Drift tubes water; rate of flow to drift tubes and collector

connected in series $q \approx 9 \text{ l/min}$, T_i max. 80 °C,

 $\Delta p = 200 \text{ kPa} (2 \text{ bar})$

Cavities 3 and 4 forced air; $q = 1.5 \text{ m}^3/\text{min}$, $\Delta p = 250 \text{ Pa}$ (2.5 mbar)

T; max. 45 °C

MASS AND DIMENSIONS

Klystron

net approx. 80 kg gross approx. 230 kg

outline dimensions

of packing (cm) 205 x 75 x 65

Cavities approx. 45 kg

Magnet frame with coils approx. 885 kg

MOUNTING

Mounting position: vertical with collector up.

To remove the tube from the magnet frame a total free height of 3.5 m, excluding hoist, is required.

PRODUCT SAFETY

1. X-radiation

Correct operation of the tube can be guaranteed only if a set of accessories, approved by the tube manufacturer, is used.

The operating tube generates X-rays which can penetrate the ceramic parts of the tube envelope. In order to reduce the radiation at any accessible points to an officially acceptable, non-dangerous level the tube must be shielded and any possible radiation path blocked by at least 1 mm of brass or an equivalent depth of non-magnetic X-ray absorbing material. The proper use of accessories will provide the necessary shielding.

2. R.F. radiation

R.F. power may be emitted through apertures other than the normal output coupling (for example r.f. leaks). This r.f. power may be sufficiently intense to cause danger to the human body, particularly to the eyes. Such radiation may be increased if the tube is functioning incorrectly.

Instruction manual

For detailed mounting and tuning instructions see klystron instruction manual, delivered with each tube.

YK1198

Tool set

Recommended circulator

ACCESSORIES			
Set of sealing rings		TE1147	1 570 × 901 , 70
Collector radiation suppressor		TE1195	5
Accelerator electrode ring		TE1141	
Cathode ring		TE1142	2
Water interconnecting pipes between drift tubes $T_1 - T_2$ $T_2 - T_3$		TE1135	B
T ₃ - T ₄ T ₄ - T ₅		TE1135	
Extension pipes for drift tubes		6 x TE1 2 x TE1	
Flexible water pipes between tube and boiler between frame and tube tube outlet	for vapour coo TE1145A TE1145B —		for water cooling — TE1145B TE1145C
Boiler for vapour cooling or	TE1110		_ 10 400
Cooler for water cooling	_		TE1194
Magnet flux ring		TE1138	3
Water protection shield		TE1139)
Spark gap		TE1140)
Set of connectors (heater, cathode, accelerator electrode, getter-ion p	ump)	TE1146	
Cavities	итр,	3 x TE1 1 x TE1	1191A
Input coupler		TE1102	2
Load coupler for cavities 2 and 3		2 x TE1	1102
Blind flanges		3 x TE1	1157
Output coupler for cavity 4		TE1192	2
Arc detector		TE1107	7
Magnet frame with coils		TE1193	3

TE1137

2722 162 01561 (T100/V-N)

LIMITING VALUES (Absolute maximum rating system)				
Heater voltage	max.	9.5	V	
Beam voltage	max.	28	kV	
Cold cathode voltage	max.	-30	kV	
Beam current	max.	7	A	
Body current	max.	60	mA	
Accelerator electrode current	max.	6	mA	note 5
Collector dissipation	max.	150	kW	
Load VSWR	max.	1.5		
Temperature of envelope	max.	175	oC	
Static pressure in the body cooling system and in the water				
cooling jacket TE1194	max.	600	kPa	(6 bar)
TYPICAL OPERATING CONDITIONS				
As 60 kW CW amplifier				
Output power		60	kW	
Beam voltage		27	kV	
Beam current		4.9	A	note 6
Accelerator to cathode voltage	~	17	kV	
Body current				
without drive at 60 kW		10 20	mA mA	
Focusing coil current	≈	10	Α	
Drive power, at 800 MHz	≈	2	W	note 7
Bandwidth at -1 dB points	≈	5	MHz	
Operating efficiency	=	45	%	

Note

- 1. When switching on the heater voltage, the heater current must never exceed a peak value of 65 A.
- 2. In case of a mains failure an interruption up to 30 s can be tolerated without new waiting time. After min. 10 minutes of stand-by heating time at 6 V (black heat), the beam current may be switched on; the heater voltage must be increased to its nominal value of 8.5 V simultaneously. Continuous black heat periods should not exceed two weeks and should be separated by similar periods of rest or full operation.
- To ensure that the klystron is always ready for operation, operate the ion getter pump at least every 6 months (preferably every 3 months) during storage. For details see klystron instruction manual.
- 4. In order to avoid corrosion of the cooling system, coolant water must be pure and deionized (resistivity min. 100 k Ω ·cm).
- 5. The accelerator electrode voltage must not be positive with respect to the body (ground).
- 6. If the accelerator electrode is connected to the body (ground) via 10 k Ω resistor, the beam current is within \pm 5% of the value given in the graph of Fig. 3.
- 7. The drive power is defined as the power delivered to a matched load.

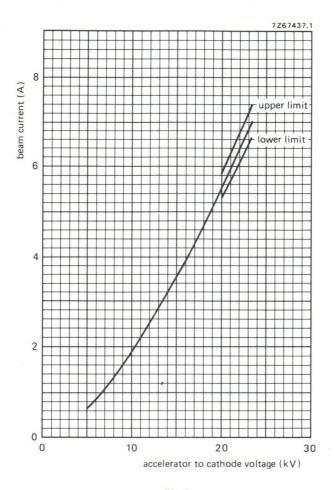


Fig. 3.

S.H.F. POWER KLYSTRON

Forced-air cooled power amplifier klystron in metal-ceramic construction for the frequency band of 11.8 to 12.2 GHz. The tube has internal resonant cavities, beam focusing by means of permanent magnets, and an integral getter-ion pump. The YK1210 is intended to be used in vision and sound transmitters, and transposers. It may be operated with or without depressed collector voltage.

QUICK REFERENCE DATA

Frequency range	11.8 to 12.2 GHz
Output power as vision transmitter	1.15 kW
Gain	50 dB
Cooling	forced air

This data must be read in conjunction with GENERAL OPERATIONAL RECOMMENDATIONS for KLYSTRONS.

HEATING: indirect by d.c.

Cathode	dispenser ty	pe	
Heater voltage	V_{f}	5 to 6	V
Heater current	If	4 (≤ 5)	Α
Heater peak starting current	lf p	max. 8	Α
Cold heater resistance	R _{fo}	≈ 20	$m\Omega$
Waiting time	tw	min. 120	S

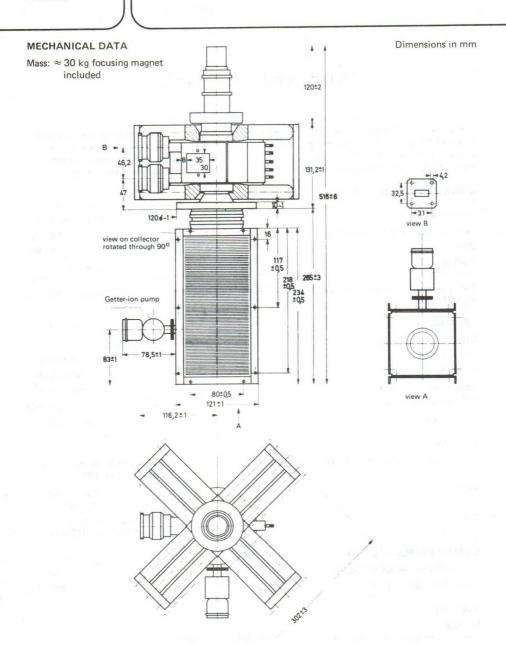
COOLING

Collector

Cathode socket and accelerating electrode	low-velocity air flow $0.5 \text{ m}^3/\text{min}$, 100 cm^2
Body	forced air, $\approx 0.5 \text{ m}^3/\text{min}$
	$\Delta p \leq 1000 \text{ kPa} (10 \text{ bar})$

GETTER-ION PUMP SUPPLY

Pump voltage, no-load condition	3 kV
Internal resistance of supply	300 kΩ


MOUNTING

Vertical

Forces on klystron terminals max 10 N. Bending moment max 10 Nm.

To maintain correct focusing, the magnetic system should not be closer than 150 mm to external ferromagnetic materials, and no closer than 300 mm to external magnets.

forced air, $\approx 6 \text{ m}^3/\text{min}$ $\Delta p \leq 1000 \text{ kPa} (10 \text{ bar})$

LIMITING VALUES (Absolute maximum rating system)				
Collector to cathode voltage	max.	15	kV	
Body to collector voltage	max.	4	kV	
Body to accelerator voltage	max.	15	kV	
Accelerator to cathode voltage	max. min.		kV kV	
Cathode current	max.	650	mA	
Collector dissipation	max.	7.5	kW	
Drift tube current, static, set value	max.	10	mA	
As vision transmitter at W _{o sync} = 1 kW				
dynamic, without depressed collector voltage	max.	30	mA	
dynamic, with depressed collector voltage	max.	60	mA	
as transposer at W _{o sync} = 210 W				
dynamic, without depressed collector voltage	max.	20	mA	
dynamic, with depressed collector voltage current cut-out region measuring range	max.		mA	
Getter-ion pump voltage	max.		kV kV	
Pump current	max.	15	mA	
Internal resistance of the pump supply	min.	300	$k\Omega$	
Accelerator current	max.	-0.2 to $+2$	mA	
Series resistor in accelerator circuit	min.	10	$k\Omega$	
Temperature of focusing magnets	max.	55	oC	
Inlet temperature of cooling air	max.		oC oC	

		Name and Address of the Owner, where the Owner, which is the Owner, where the Owner, which is the Owner,	A STATE OF THE PARTY OF THE PAR
TYPICAL OPERATION			
Frequency range	11.8	to 12.2	GHz
Bandwidth (-1 dB)	≥	12	MHz
Power gain		50 (≥ 49)	dB
T sav	without depressed collector voltage	with depressed collector volta	
As vision transmitter			
Collector to cathode voltage	10.5	8.5	kV
Body to collector voltage	0	2	kV
Cathode current	0.4	0.4	Α
Output power, sync	1.15	1.15	kW
As sound transmitter			
Collector to cathode voltage	10.5	8.5	kV
Body to collector voltage	0	2	kV
Cathode current	0.4	0.4	Α
Output power	1.05	1.05	kW
As transposer (Wo nom. 100 W)			
Collector to cathode voltage	10.5	8.0	kV
Body to collector voltage	0	2.5	kV
Cathode current	0.4	0.4	Α
Output power, sync	105	105	W
Intermodulation products	≤ -57	≤ -57	dB
As transposer (W _O nom. 200 W)			
Collector to cathode voltage	12	9	kV
Body to collector voltage	0	3	kV
Cathode current	0.5	0.5	A
Output power, sync	210	210	W
Intermodulation products	≤ -57	≤ -57	dB

GENERAL NOTES ON POWER SUPPLY DESIGN

	range*	internal resistance	hum -
Heater voltage	4.5 to 6.5 V (max. 5 A)	The heater current should not exceed a value of 8 A when switching on the supply	Corresponding to non-smoothed three- phase bridge rectifier
Body to collector voltage	0/2.0/2.5/3.0 kV 100 mA continuous 200 mA peak	< 600 Ω	< 0.1%
Collector to cathode voltage**	8.0/8.5/9.5 kV with depressed collector voltage 10.5/11.5 kV without depressed collector voltage	< 600 Ω	< 0.1%
Body to accelerator voltage	The second secon	al resistance $\approx 5~\text{M}\Omega$ and set for 15 kV) between acceler	

PRODUCT SAFETY

R.F. radiation

R.F. power may be emitted not only through the normal output coupling but also through other apertures (for example, r.f. leaks). This r.f. power may be sufficiently intense to cause danger to the human body, particularly to the eyes. Such radiation may be increased if the tube is functioning incorrectly.

X-radiation

A highly dangerous intensity of X-rays may be emitted by tubes operating at voltages higher than approximately 5 kV. Adequate protection (X-ray shielding) for the operator is then necessary. The emisson intensity of X-rays may correspond to a value of voltage much higher than that expected from the actual value applied to the tube.

Poor focusing may result in excessive X-radiation.

- * Maximum allowable deviation from nominal or set values:
 - a) ±2% during adjustment, if the published performance is to be attained.
 - b) ±1% fluctuation of the set values during operation to maintain the performance.
- ** It is recommended that additional taps be made pprox 500 V above and below the indicated values.

U.H.F. POWER KLYSTRONS

For u.h.f. band IV/V vision transmitters and sound transmitters.

Metal-ceramic construction, four external cavities, electromagnetic focusing and a high-stability dispenser type cathode.

Suitable for vapour, vapour-condensation or water cooling.

YK1223 comprising a non-intercepting annular beam control electrode (ABC) for low-voltage beam modulation.

QUICK REFERENCE DATA

Frequency range	470 to 860 MHz
Output power as vision transmitter	10 and 15 kW
Cooling	vapour, vapour condensation, or water

This data must be read in conjunction with GENERAL OPERATIONAL RECOMMENDATIONS for KLYSTRONS.

HEATING: indirect by d.c.			notes
Cathode	dispenser type		
Heater voltage	V_{f}	5.0 V*	
Heater current	$I_{\rm f} \approx 19.5 \rm to$	22.5 A	1
Cold heater resistance	R _{fo} ≈	25 mΩ	
Waiting time at $V_f = 5.0 \text{ V}$ at $V_f = 4.3 \text{ to } 4.5 \text{ V} \text{ (black heat)}$	t _w min. t _w min.	300 s 0 s	2
FOOLIONIO			

FOCUSING

Focusing coil current		8 to 11	A
Resistance of focusing coils cold (20 °C)		7005	0
cold (20°C)		7.2 to 9.5	Ω
operating at an ambient temperature of 20 °C	<	11	Ω

BEAM CONTROL for YK1220

6, 7

The accelerator electrode voltage allows adjustment of the beam current between 0 and 100 %.

BEAM CONTROL for YK 1223

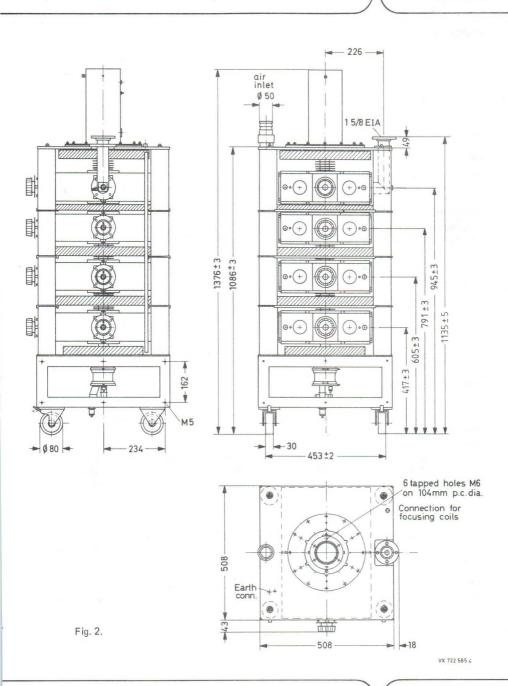
6, 7

The klystron comprises a non-intercepting annular beam control electrode (ABC) for low-voltage beam modulation. See Fig. 7. Additionally the accelerator electrode voltage allows adjustment of the beam current between 0 and 100%.

GETTER-ION PUMP SUPPLY

3

Pump voltage, no-load condition 3 to 4 kV Internal resistance of supply 300 k Ω


^{*}During operation the heater voltage may not fluctuate more than +1 or -2 %.

MECHANICAL DATA

Dimensions in mm

Fig. 1.

MASS AND DIMENSIONS

Klystron

net approx. 25 kg gross approx. 77 kg

outline dimensions

of packing (cm) 170 x 45 x 46

Cavities

approx. 45 kg

Magnet frame with coils

approx. 220 kg

MOUNTING

Mounting position: vertical with collector up.

To remove the tube from the magnet frame a total free height of 2.5 m, excluding hoist, is required.

COOLING

Cavities 1, 2, 3 and 4, drift tubes 4 and 5

and cathode socket

forced air, T_i max. 50 °C

 $q \approx 1.2 \text{ m}^3/\text{min}, \Delta p = 350 \text{ Pa } (3.5 \text{ mbar})$

Cathode socket only, during black heat

Collector

forced air, T $_{i}$ max. 50 $^{o}\text{C},\,\text{q}\approx0.15~\text{m}^{3}/\text{min}$

vapour with boiler TE1189C, note 4

volume of water converted to steam: 27 cm $^3/min$ per kW collector dissipation resulting in 43 ℓ/min

steam per kW collector dissipation;

water or vapour condensation (with water jacket TE1189A) q = 7 to 18 ℓ/min , T $_{O}$ max. 90 ^{O}C , see Fig. 4. For 10 ℓ/min , Δp = 16 kPa (0.16 bar).

PRODUCT SAFETY

1. X-radiation

Correct operation of the tube can be guaranteed only if a set of accessories, approved by the tube manufacturer, is used.

The operating tube generates X-rays which can penetrate the ceramic parts of the tube envelope. In order to reduce the radiation at any accessible points to an officially acceptable, non-dangerous level the tube must be shielded and any possible radiation path blocked by at least 1 mm of brass or an equivalent depth of non-magnetic X-ray absorbing material. The proper use of accessories will provide the necessary shielding.

2. R.F. radiation

R.F. power may be emitted through apertures other than the normal output coupling (for example r.f. leaks). This r.f. power may be sufficiently intense to cause danger to the human body, particularly to the eyes. Such radiation may be increased if the tube is functioning incorrectly.

Instruction manual

For detailed mounting and tuning instructions see klystron instruction manual, delivered with each tube.

D.C. current at -1000 V*

ACCESSORIES				
Correct operation can be guaranteed only if approved access	ories are used.			notes
Collector radiation suppressor		TE1182B		
Spark gap		TE1183		
Set of connectors				
(heater, cathode, accelerator electrode, getter-ion pump)		TE1184		
Magnet frame with coils		TE1188		
	water cooling	or vapo	ur	
	vapour conder			
	sation cooling		175	
Collector cooling jacket	TE1189A	TE1	189C	
Temperature sensor	_	TE1	199	11
Tool set		TE1190		
Cavities		4 × TE118	5	
Inlet coupler and load coupler for cavities 2 and 3		3 x TE118	6C	12
Output coupler, 3 1/8 inch, 90°-elbow		TE1187C		13, 14
Arc detector		TE1107B		
Recommended circulators (optional) 470 to 600 MHz 600 to 800 MHz 790 to 1000 MHz	2722 162 015 2722 162 015 2722 162 032	61 (T100/\	/-N)	
LIMITING VALUES (Absolute maximum rating system)				
Heater voltage		max. 6.5	V	
Beam voltage		max. 21	kV	
Cold cathode voltage		max21	kV	
Beam current		max. 3	Α	
Body current		max. 100	mA	
Accelerator electrode current		max. 5	mA	5
Collector dissipation		max. 42	kW	
Load VSWR		max. 1.5		
Temperature of tube envelope		max. 175	oC	
Static pressure in the cooling system TE1189A		max. 600	kPa	(6 bar)
Focusing coil current		max. 11.5	A	
ABC-electrode voltage with respect to cathode for YK1223 $$		max1	kV	
PERFORMANCE DATA				
of ABC-electrode for YK1223	min.	typ. max.		
Capacity	70	75 85	pF	

^{*} The d.c. electrode current may rise up to max. 1 mA during life time. The applied modulator should be designed for an ABC-electrode current of at least 1 mA.

0.5 mA

TYPICAL OPERATING CONDITIONS	S (mod	ulation	electroc	de YK12	23 at ca	thode p	otentia	al)	
As 10 kW vision transmitter									notes
Standard CCIR:		G	1	G	1	G	1		10
Channel		21		45		68			
Output power, peak sync.		11		11		11		kW	
Beam voltage		13	13.5	15	15	16	16	kV	
Beam current		1.95	2.05	1.55	1.55	1.5	1.5	Α	6
Accelerator to cathode voltage		≈ 12	≈ 12.5	≈ 10	≈ 10	≈ 10	≈ 10	kV	7
Body current without drive		≈ 10	≈ 10	≈ 7	≈ 7	≈ 7	≈ 7	mA	
at black level		≈ 50	≈ 50	≈ 35	≈ 35	≈ 30	≈ 30	mA	
Focusing coil current		≈ 10	≈ 10	≈ 9	≈ 9	≈ 9	≈ 9	Α	
Drive power, peak sync., max.		10	15	6	10	4	8	W	8
Operating efficiency		43	40	47	47	45	45	%	
Minimum efficiency		42	40	46	44	44	43	%	
Sound transmitter									
Output power		1.1		2.2		5.5		kW	
Beam voltage		13	16	13	16	18.	.5	kV	
Beam current		0.38	0.3	0.5	0.4	0	.8	Α	6
Accelerator to cathode voltage		≈ 3.5	≈ 3.0	≈ 4.5	≈ 3.5	≈ 6	.0	kV	7
Body current		≈ 15		≈ 15		≈ 15		mA	
Focusing coil current		≈ 10		≈ 10		≈ 10		A	9
Drive power, channel 21		4		4		4		W	8
channel 45		2		2		2		W	8
channel 68		1		1		1		W	8
Bandwidth at -1 dB points		≥ 300		≥ 300		≥ 300		kHz	
Operating efficiency		22		34		37		%	

Operating efficiency

As 15 kW vision transmitter								notes	
Standard CCIR:	G	1	G		G	1.		10	
Channel		21		45		68			
Output power, peak sync.	1	16.5		16.5					
Beam voltage	16.5	15.5	17.5	17.5	19	19	kV		
Beam current	2.35	2.6	2.0	2.0	1.95	1.95	A	6	
Accelerator to cathode voltage	≈ 13.5	≈ 14.5	≈ 12	≈ 12	≈ 12	≈ 12	kV	7	
Body current without drive	≈ 10	≈ 10	≈ 7	≈ 7	≈ 7		mA		
at black level	≈ 50	≈ 70	≈ 45	≈ 45	≈ 40	≈ 40			
Focusing coil current	≈ 10	≈ 10	≈ 9	≈ 9	≈ 9	≈ 8		•	
Drive power, peak sync. max.	10	15	8	10	6	10		8	
Operating efficiency	43	43	47	47	45	45			
Minimum efficiency	42	40	46	44	44	43	%		
Sound transmitter									
Output power		1.65		3.3		kW			
Beam voltage			15.5	19	15.5	19	kV		
Beam current			0.37	0.3	0.63	0.5	Α	6	
Accelerator to cathode voltage			≈ 3.5	≈ 3.0	≈ 5.0	≈ 4.5	kV	7	
Body current			~	15	≈	15	mA		
Focusing coil current			~	10	~	10	A	9	
Drive power, channel 21				4		4	W	8	
channel 51				2		2	W	8	
channel 68				1		1	W	8	
Bandwidth at -1 dB points			≥3	800	≥ 3	300	kHz	2	

34

29

Notes

- 1. When switching on the heater voltage, the heater current must never exceed a peak value of 65 A.
- 2. In case of a mains failure an interruption up to 30 s can be tolerated without new waiting time. After min. 10 minutes of stand-by heating time at 4.3 to 4.5 V (black heat), the beam current may be switched on; the heater voltage must be increased to its nominal value of 5.0 V simultaneously. Continuous black heat periods should not exceed two weeks and should be separated by similar periods of rest or full operation.
- 3. To ensure that the klystron is always ready for operation, operate the ion getter pump at least every 6 months (preferably every 3 months) during storage. For details see klystron instruction manual.
- 4. In order to avoid corrosion of the cooling system, coolant water must be pure and deionized (resistivity min. 100 kΩ·cm).
- 5. The accelerator electrode voltage must not be positive with respect to the body (ground).
- 6. For cathode current versus accelerator-to-cathode voltage, see Fig. 5.
- 7. The accelerator electrode has to be connected to its supply (power supply or voltage divider) via a 10 k Ω resistor.
 - For adjusting the cathode current a voltage divider should be dimensioned according to an accelerator electrode current of max. 1.5 mA.
- 8. The drive power is defined as the power delivered to a matched load.
- Value is not critical. It may be set in accordance to the vision klystron focusing coil current. Operation of one vision and one sound klystron focusing units in series is admitted.
- Standard CCIR-G: klystron tuned to frequency response according to the specification CCIR-G. Standard CCIR-I: klystron tuned to frequency response according Fig. 3.

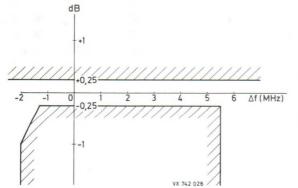


Fig. 3.

- 11. Optional.
- 12. Standard equipment is directly controlled on the side of trolley. In case of front panel control TE1186A is available instead of TE1186C.
- Output coupler 1 5/8" (TE1187B for direct control, TE1187A for front panel control) is also available. Please contact manufacturer.
- 14. The output couplers comprise a standard loop. For several channels a modified loop is to be used. Please indicate channel when ordering.

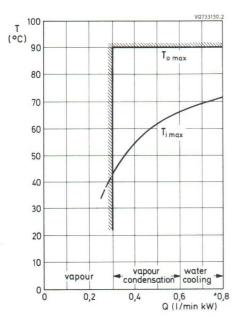
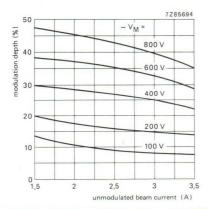



Fig. 4.

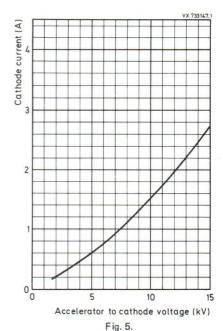


Fig. 6 ABC-operation for YK1223. Parameter: modulation voltage $-V_{\mbox{\it M}}$ (with respect to cathode).

A CONTRACT

and the spirit of the

- A (Jan se

Charles in

N - age as as a

Asserting the second of the se

(and a section

at nia

U.H.F. POWER KLYSTRONS

For u.h.f. band IV/V vision transmitters and sound transmitters.

Metal-ceramic construction, four external cavities, electromagnetic focusing and a high-stability dispenser type cathode.

Suitable for vapour, vapour-condensation or water cooling.

YK1233 comprising a non-intercepting annular beam control electrode (ABC) for low-voltage beam modulation.

QUICK REFERENCE DATA

Frequency range	470 to 860 MHz
Output power as vision transmitter	20, 25 and 30 kW
Cooling	vapour, vapour condensation, or water

This data must be read in conjunction with GENERAL OPERATIONAL RECOMMENDATIONS for KLYSTRONS.

HEATING, indirect by a.c.			n	otes
Cathode	dispenser type			
Heater voltage	V _f	5.0	V*	
Heater current	$I_{\rm f}$ \approx 19.5 to 2	22.5	A	1
Cold heater resistance	R _{fo} ≈	25	$m\Omega$	
Waiting time at $V_f = 5.0 \text{ V}$ at $V_f = 4.3 \text{ to } 4.5 \text{ V}$ (black heat)	t _W min. t _W min.	300		2
FOCUSING				

FOCUSING

Focusing coil current		8 to 11	A	
Resistance of focusing coils				
cold (20 °C)		7.2 to 9.5	Ω	
operating at an ambient temperature of 20 °C	<	11	Ω	

BEAM CONTROL for YK1230 6, 7

The accelerator electrode voltage allows adjustment of the beam current between 0 and 100 %.

BEAM CONTROL for YK1233 6, 7

The klystron comprises a non-intercepting annular beam control electrode (ABC) for low-voltage beam modulation. See Fig. 7. Additionally the accelerator electrode voltage allows adjustment of the beam current between 0 and 100%.

GETTER-ION PUMP SUPPLY	
Pump voltage, no-load condition	3 to 4 kV
Internal resistance of supply	300 kΩ

^{*}During operation the heater voltage may not fluctuate more than \pm 1 or -2 %.

3

MECHANICAL DATA

Dimensions in mm

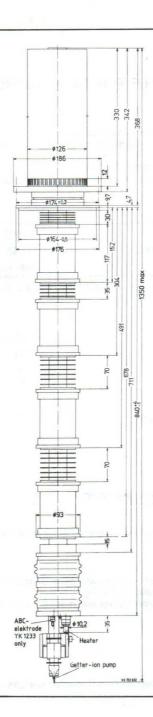
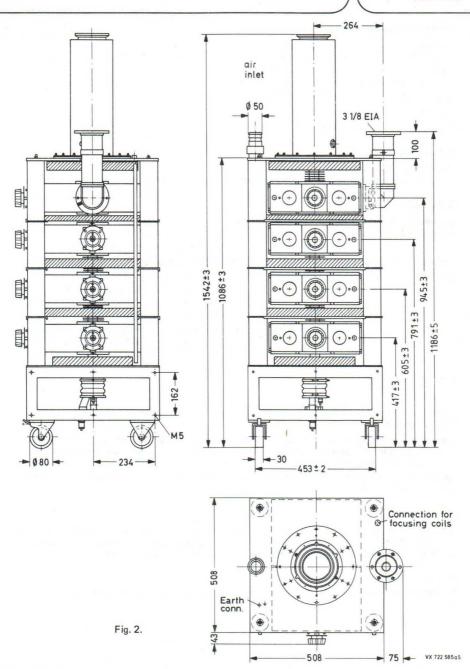



Fig. 1.

MASS AND DIMENSIONS

Klystron

approx. 40 kg net approx. 90 kg aross outline dimensions 170 x 45 x 46 of packing (cm) Cavities approx. 45 ka Magnet frame with coils approx. 220 kg

MOUNTING

Mounting position: vertical with collector up.

To remove the tube from the magnet frame a total free height of 2.5 m, excluding hoist, is required.

COOLING

Cavities 1, 2, 3 and 4, drift tubes 4 and 5 and cathode socket

Cathode socket only, during black heat

Collector

forced air, T; max. 50 °C $g \approx 1.2 \text{ m}^3/\text{min}, \Delta p = 350 \text{ Pa} (3.5 \text{ mbar})$

forced air, T_i max. 50 °C, $q \approx 0.15$ m³/min vapour with boiler TE1189D, note 4 volume of water converted to steam: 27 cm3/min

per kW collector dissipation resulting in 43 l/min steam per kW collector dissipation;

water or vapour condensation (with water jacket TE1189F) $q = 16 \text{ to } 36 \text{ } \ell/\text{min}, T_0 \text{ max } 90 \text{ } ^0\text{C},$ see Fig. 4. For 10 ℓ/\min , $\Delta p = 16$ kPa (0.16 bar).

PRODUCT SAFETY

1. X-radiation

Correct operation of the tube can be guaranteed only if a set of accessories, approved by the tube manufacturer, is used.

The operating tube generates X-rays which can penetrate the ceramic parts of the tube envelope. In order to reduce the radiation at any accessible points to an officially acceptable, non-dangerous level the tube must be shielded and any possible radiation path blocked by at least 1 mm of brass or an equivalent depth of non-magnetic X-ray absorbing material. The proper use of accessories will provide the necessary shielding.

2. R.F. radiation

R.F. power may be emitted through apertures other than the normal output coupling (for example r.f. leaks). This r.f. power may be sufficiently intense to cause danger to the human body, particularly to the eyes. Such radiation may be increased if the tube is functioning incorrectly.

Instruction manual

For detailed mounting and tuning instructions see klystron instruction manual, delivered with each tube.

ACCESSORIES						
Correct operation can be guaranteed only if approved access	ories are	used.				notes
Collector radiation suppressor			TE11	82B		
Spark gap			TE11			
Set of connectors						
(heater, cathode, accelerator electrode, getter-ion pump)			TE11	84		
Magnet frame with coils			TE11	88		
	water of vapour sation	conde	en-	vapour		
Collector cooling jacket	TE118	9F		TE118	9D	
Temperature sensor	_			TE119		11
Tool set			TE11	90		
Cavities			4 x T	E1185		
Inlet coupler and load coupler for cavities 2 and 3			3 x T	E1186C		12
Output coupler, 3 1/8 inch, 90° elbow			TE11	87C		13
Arc detector			TE11	07B		14
Recommended circulators (optional) 470 to 600 MHz 600 to 800 MHz 790 to 1000 MHz	2722 1	62 015	61 (T	100/IV-1 100/V-N 100/V-3)	
LIMITING VALUES (Absolute maximum rating system)						
Heater voltage		max.	6.5	V		
Beam voltage		max.	26	kV		
Cold cathode voltage		max.	-26	kV		
Beam current		max.	3.8	Α		
Body current		max.	120	mA		
Accelerator electrode current		max.	5	mA		5
Collector dissipation		max.	70	kW		
Load VSWR		max.	1.5			
Temperature of tube envelope		max.	175	°C		
Static pressure in the cooling system TE1189F		max.	600	kPa		(6 bar
Focusing coil current		max.	11.5	A		
ABC-electrode voltage with respect to cathode for YK1233		max.	-1	kV		
PERFORMANCE DATA						
of ABC-electrode for YK1233	min.	typ.	max.			
Capacity	70	75	85	pF		
D.C. current at -1000 V*	_	_	0.5	mA		
* The d.c. electrode current may rise up to max. 1 mA during the designed for an ABC-electrode current of at least 1 m/s		me. Th	e appl	ied mod	ulator	should

be designed for an ABC-electrode current of at least 1 mA.

TYPICAL OPERATING CONDITIONS (modulat	ion electro	de YK12	33 at catho	ode pote	ntial)	
As 20 kW vision transmitter						notes
Standard CCIR-G						9
Channel	21	1	45	68		
Output power, peak sync.	22		22	22	kW	
Beam voltage	19.5		20	22	kV	
Beam current	2.7	2	.45	2.2	A	6
Accelerator to cathode voltage	≈ 15	≈	14	≈ 13	kV	7
Body current without drive at black level	≈ 10 ≈ 50		≈ 7 45	≈ 7 ≈ 40	mA mA	
Focusing coil current	≈ 10	2	≈ 9	≈ 9	Α	
Drive power, peak sync.	15		10	10	W	8
Operating efficiency	42		45	45	%	
Minimum efficiency	41		44	44	%	
Sound transmitter						
Output power	2	2.2		4.4	kW	
Beam voltage	19.5	22	19.5	22	kV	
Beam current	0.4	0.35	0.6	0.55	Α	6
Accelerator to cathode voltage	≈ 3.5	≈ 3.0	≈ 5.0	≈ 4.5	kV	7
Body current	~	15	~	15	mA	
Focusing coil current	~	10	~	10	A	9
Drive power, channel 21 channel 45 channel 68		4 2 1		4 2 1	W W W	8 8 8
Bandwidth at -1 dB points	≥ 3	00	≥ 3	800	kHz	
Operating efficiency	:	28		37	%	

As 25 kW vision transmitter								notes
Standard CCIR:	G	- 1	G	1	G	- I		10
Channel		21	4	5	6	8		
Output power, peak sync.		27	2	27	2	7	kW	
Beam voltage	21	19	21.5	21.5	23.5	23.5	kV	
Beam current	3	3.45	2.8	2.8	2.5	2.55	Α	6
Accelerator to cathode voltage	≈ 16	≈ 17.5	≈ 15	≈ 15	≈ 14	≈ 14	kV	7
Body current without drive at black level	≈ 10 ≈ 60	≈ 10 ≈ 80	≈ 7 ≈ 50	≈ 7 ≈ 50	≈ 7 ≈ 45	≈ 7 ≈ 50	mA mA	
Focusing coil current	≈ 10	≈ 10	≈ 9	≈ 9	≈ 9	≈ 9	Α	
Drive power, peak sync., max.	15	25	10	20	10	20	W	8
Operating efficiency	42	41	45	45	46	45	%	
Minimum efficiency	41	40	44	44	44	43	%	
Sound transmitter								
Output power	_	2.7	_	5.	5		kW	
Beam voltage	19	9 23.	5	19	23.5		kV	
Beam current	0.4	7 0.38	В	0.7	0.55		A	6
Accelerator to cathode voltage	≈ 4.7	7 ≈ 4.1	1 ≈	5.5	≈ 4.5		kV	7
Body current		≈15		≈	15		mA	
Focusing coil current		≈ 8		≈	10		A	9
Drive power, channel 21 channel 45 channel 68	,	4 2 1			4 2 1		W W W	8 8 8
Bandwidth at -1 dB points		≥300		≥ 3	00		kHz	
Operating efficiency		30			41		%	
oporating or more re-								

TYPICAL OPERATING CONDITIONS (continued)

modulation electrode YK1233 at cathode potential

As 30 kW vision transmitter											notes
Standard *	G	M	K	G	M	K	G	M	K		10
Channel	21	14	21	42	42	42	62	69	62	in to	
Output power, peak sync.	32	32	32		32	•		32		kW	
Beam voltage	23	23	21		24			25		kV	
Beam current	3.3	3.3	3.7		2.95		PET DRUG	2.85		Α	6
Accelerator to cathode	≈ 17.5		18.5		16.5			16		kV	7
Without arre	≈ 10 ≈ 50	10 50	10 50		7 45			7 40		mA mA	
Focusing coil current	≈ 9	9	10		8			8		Α	
Drive power, peak sync., max.	25	25	25		20			20		W	8
Operating efficiency	42	42	41		45			45		%	
Minimum efficiency	41	41	40		44			44		%	
Sound transmitter											
							3	3.3		kW	
Beam voltage							23	^	25	kV	
Beam current							0.42		0.39	Α	6
Accelerator to cathode voltage							≈ 4.5	3	≈ 4.2	kV	7
Body current							~	×15		mA	
Focusing coil current							~	≈ 8		A	9
Drive power, Standard* M G,K											
channel								4 2 1		W W W	8 8 8
Bandwidth at -1 dB points							≥3	00		kHz	
Operating efficiency								34		%	

^{*}Standards: CCIR-G, RTMA-M, RTMA-M* and CCIR-K.

Notes

- 1. When switching on the heater voltage, the heater current must never exceed a peak value of 65 A.
- 2. In case of a mains failure an interruption up to 30 s can be tolerated without new waiting time. After min. 10 minutes of stand-by heating time at 4.3 to 4.5 V (black heat), the beam current may be switched on; the heater voltage must be increased to its nominal value of 5.0 V simultaneously. Continuous black heat periods should not exceed two weeks and should be separated by similar periods of rest or full operation.
- To ensure that the klystron is always ready for operation, operate the ion getter pump at least every 6 months (preferably every 3 months) during storage. For details see klystron instruction manual.
- 4. In order to avoid corrosion of the cooling system, coolant water must be pure and deionized (resistivity min. 100 k Ω ·cm).
- 5. The accelerator electrode voltage must not be positive with respect to the body (ground).
- 6. For cathode current versus accelerator-to-cathode voltage, see Fig. 5.
- 7. The accelerator electrode has to be connected to its supply (power supply or voltage divider) via a $10 \text{ k}\Omega$ resistor.
 - For adjusting the cathode current a voltage divider should be dimensioned according to an accelerator electrode current of max. 1.5 mA.
- 8. The drive power is defined as the power delivered to a matched load.
- Value is not critical. It may be set in accordance to the vision klystron focusing coil current.
 Operation of one vision and one sound klystron focusing unit in series is admitted.
- Standard CCIR-G: klystron tuned to frequency response according to the specification CCIR-G. Standard CCIR-I: klystron tuned to frequency response according Fig. 3.
 Standard CCIR-M: klystron tuned to frequency response according to the specification CCIR-M.

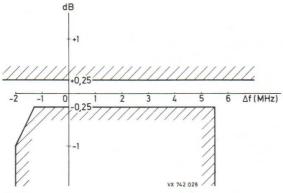
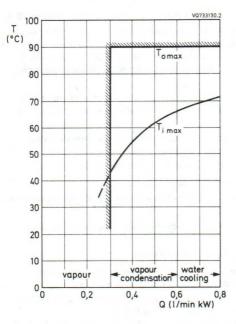



Fig. 3.

- 11. Optional.
- 12. Standard equipment is directly controlled on the side of trolley. In case of front panel control TE1186A is available instead of TE1186C.
- 13. The output couplers comprise a standard loop. For several channels a modified loop is to be used. Please indicate channel when ordering.
- 14. One arc detector for cavity 4 is required. For output power > 15 kW an additional arc detector for cavity 3 is recommended.

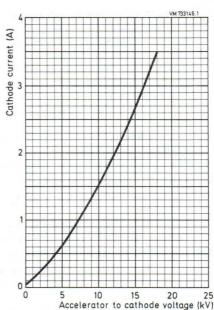


Fig. 4.

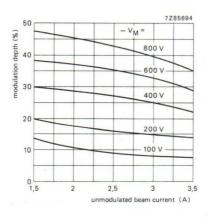


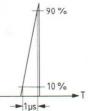
Fig. 6 ABC-operation for YK1233. Parameter: modulation voltage $-V_{\mbox{\scriptsize M}}$ (with respect to cathode).

HIGH-POWER KLYSTRONS

Fixed frequency, high-power klystron in metal-ceramic construction, for use in scientific and industrial applications. The tube has internal cavities, solenoid focusing, and a high stability dispenser-type cathode.

QUICK REFERENCE DATA

Centre frequency (fixed tuned)	1300	MHz	
Bandwidth		note 1	
Pulse output power	330	kW	
Cooling			
collector	water		
body	air		


This data must be read in conjunction with GENERAL OPERATIONAL RECOMMENDATIONS for KLYSTRONS.

HEATING: indirect by a.c.

Cathode	dispenser type					
		min.	typ.	max.		
Heater voltage	Vf	7	7.8	8.5	V	note 2
Heater current	If	31	32	33	A	
Cold heater resistance	R _{fo}		30	_	$m\Omega$	
Waiting time	tw	10	15	_	minutes	
FOCUSING: electromagnetic						
Solenoid current		11	12	13	A	
Solenoid voltage		_	_	200	V	
GETTER-ION PUMP SUPPLY						
Operating voltage		3	4	5	kV	
Operating current		_	5.10-3	5	mA	
Internal resistance of power supply		_	300	_	kΩ	

Notes

- Bandwidth, see Fig. 1.
 An input signal with an edge of 1 μs will be transmitted without discernable overshooting of the output signal.
- 2.Typical values are adjusted at the supplied heater transformer, which is mounted inside of the oil container (primary voltage 220 V).

109

MECHANICAL DATA

Dimensions in mm

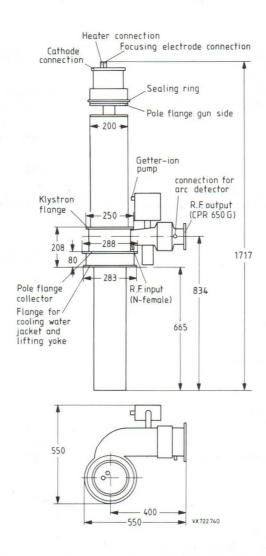


Fig. 2.

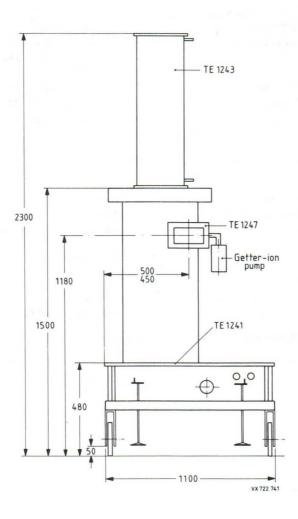


Fig. 3 Complete assembly consisting of tube, trolley, oil tank, focus mount, r.f. transition and operational lead shieldings.

COOLING

Cooling is achieved by demineralized water with 10 % stabilized glycol added	min.	typ.	max.		
pressure in any cooling water circuit	_	_	900	kPa	(= 9 bar)
pressure drop	_	_	100	kPa	(= 1 bar)
Collector cooling water flow rate	8	15	30	ℓ/min	
inlet water temperature	+15	+20	+30	°C	
outlet water temperature	+15	+25	+60	°C	

MASS

Net mass of complete assembly 350 kg

DIMENSIONS

Tube and mounting frame see drawings Required ground clearance for lifting hoist min. 450 cm Capability of hoist min. 250 kg

MOUNTING

vertical, collector up R.F. CONNECTORS

Input

Output **OIL CONTAINER**, contents N-type, female, 50 Ω waveguide WR650 / CRP650G

approx. 70 l

ACCESSORIES

A. Tube parts (factory fitted)

The tube will be shipped without additional factory fitted parts.

B. Operational parts for first equipment

Operational frame, consisting of trolley, oil container, heater transformer, di/dt sensor,	
focusing coil unit and cathode plug-connections	TE1241
Collector water cooling jacket	TE1243
Temperature sensors for water inlet, —outlet and collector	TE1245
30 ^o waveguide bend (H-plain)	TE1247
Arc detector	TE1249

C. Optional parts

H.V. cable with R3 plugs, length 6 m	TE1159
H.V. dummy plug R3	TE1161

D. Parts for handling

Yoke for lifting klystron vertically	TE1251
Lifting frame for storage and any movement	
of a burnt-out or spare klystron in any	
other position than vertical	TE1253

LIMITING VALUES (Absolute maximum rating system)					
Heater voltage, a.c.	max.	8.5	V		
Heater current, a.c.	max.	33	A	note 1	
Cathode voltage to body	max.	-65	kV		
Cathode current	max.	12	Α		
Collector dissipation	max.	650	kW	note 2	
Pulse output power	max.	330	kW		
Pulse length	max.	2	S		
Ratio	max.	1/100			
Load VSWR	max.	1.2			
Input power, d.c.	max.	650	kW		
TYPICAL OPERATING CONDITIONS					
325 kW pulse output power (VSWR < 1.1)	typ.				
Cathode voltage	-60	kV			
Cathode current	11	A			
Input power, d.c.	600	kW			
Collector dissipation	330	kW			
Efficiency	50	%			
Drive power	27	W			
Pulse length	1.5	S			
Ratio	1/200				
PERFORMANCE DATA					
Phase shift to cathode current	< 20	O/A			
Phase shift to rel. cathode voltage	< 20	0/%			
R.F. output to rel. cathode voltage	< 0.3	dB/%			
Harmonic levels to fundamental	< 30	dB			
Signal-to-noise ratio	> 50	dB			

Notes

- 1. When switching on the heater voltage, the heater current must never exceed a peak value of 40 $\,\mathrm{A.}$
- 2. Maximum dissipation can be tolerated up to 0.5 s.

YK1240

INSTALLATION AND OPERATION REQUIREMENTS

A. Required interlocks

- Fast switch-off of the drive power within 10 ms has to be done if the arc detector and/or r.f. reflection indicator is activated. An arc detector must be provided at the output waveguide.
- 2. A fast switch-off of the beam supply has to be provided when one of the following situations occurs:
 - a) the beam current increases rapidly,
 - b) the solenoid current deviates by more than ±5% from the adjusted value,
 - c) when the body current exceeds 500 mA.

The switching sensors and the discharge facilities for the power supply must be designed so that a copper wire of 0.35 mm diameter, connected to the power supply instead of the klystron (length approx. 1 cm/kV), will not be destroyed, if the full operating voltage is switched on and applied to the wire.

- 3. The mains for the beam power supply has to be switched off within 100 ms when one of the following situations occur:
 - a) the collector temperature monitor (with internal thermocouple) is activated (adjusted to maximum temperature),
 - b) the monitored temperature differences between inlet and outlet in the collector and/or body cooling circuits are too high;

max. values permitted: $\Delta \theta = 30 \text{ K}$

- c) the beam current either exceeds the limiting value or increases by more than 30% or max. 2 A
 above the adjusted value,
- d) the water flow of the collector and body cooling circuit decreases below the required minimum value.

Restarting is not allowed within 10 s after any interruption.

B. Switching-on and off sequence

Switching-on sequence

- 1. Getter-ion pump supply on.
- 2. Check that the pump current is < 1 mA.
- 3. Heater voltage supply on.
- 4. Wait for preheating time (min. 10 minutes).
- 5. Cooling of focusing.
- 6. Collector cooling supply on.
- 7. Solenoid current supply on.
- 8. R.F. drive on.
- 9. Beam voltage supply on.

Switching-off sequence

- 1. Beam voltage supply off.
- 2. All other supplies and cooling circuits off.

C. Radiation dangers

R.F. radiation

R.F. power may be emitted not only through the normal output coupling but also through other apertures (for example, r.f. leaks). This r.f. power may be sufficiently intense to cause danger to the human body, particularly to the eyes. Such radiation may be increased if the tube is functioning incorrectly.

X-radiation

A highly dangerous intensity of X-rays may be emitted by tubes operating at voltages higher than approximately 5 kV. Adequate protection (X-ray shielding) for the operator is then necessary. The emisson intensity of X-rays may correspond to a value of voltage much higher than that expected from the actual value applied to the tube.

Poor focusing may result in excessive X-radiation.

This tube and accessories are equipped with a lead shielding which under normal conditions reduces the radiation values below 0.75 mR/h, measured at a distance of 1 m from the tube assembly.

CONTINUOUS-WAVE HIGH-POWER KLYSTRON

Water cooled, high efficiency, fixed frequency, continuous-wave high-power klystron in metal-ceramic construction, for use in scientific and industrial applications. The tube has internal cavities, solenoid focusing, beam control by accelerator anode and a high stability dispenser-type cathode.

QUICK REFERENCE DATA

Centre frequency (fixed tuned)	999.3	MHz
Bandwidth at saturation (-1 dB points)	4	MHz
Output power	400	kW
Cooling	water	

This data must be read in conjunction with GENERAL OPERATIONAL RECOMMENDATIONS for KLYSTRONS.

HEATING: indirect by a.c. or d.c.

Cathode				dispens	er type	
		min.	typ.	max.		
Heater voltage	V_{f}	8.0	8.5	9.0	V	
Heater current	If	24	26	28	A	notes 1, 2
Cold heater resistance	R _{fo}		30	_	$m\Omega$	
Waiting time	tw	10	-	-	minutes	
FOCUSING: electromagnetic						
Solenoid current			_	20	A	
Solenoid voltage		-	_	200	V	
Solenoid resistance			10	_	Ω	
GETTER-ION PUMP SUPPLY						
Operating voltage		3	3.3	4	kV	
Operating current		_	10-3	80	mA	
Internal resistance of power su	pply	25	300	_	$k\Omega$	

MECHANICAL DATA

Dimensions in mm

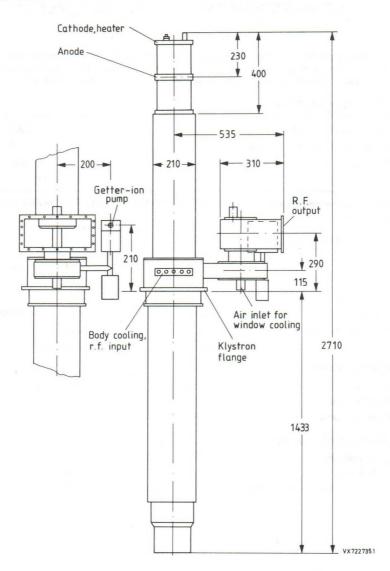


Fig. 1.

Tube mounted in the mounting frame with solenoid.

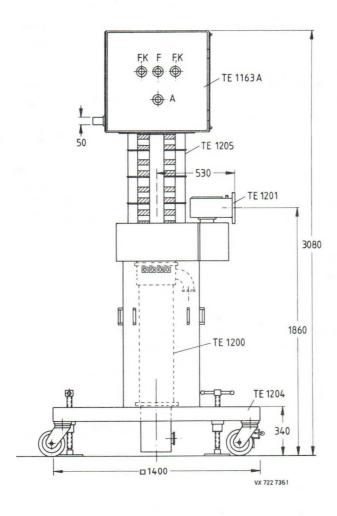


Fig. 2.

COOLING		min.	typ.	max.		
Collector						
demineralized or distilled water with 10% stabilized glycol added		350	450	550	l/min	note 3
pressure drop		_	100	_	kPa	(= 1 bar)
Body circuit I demineralized or distilled water with 10% stabilized glycol added		5	7	_	ℓ/min	note 3
pressure drop		_	300	_	kPa	(= 3 bar)
Body circuit II demineralized or distilled water with 10% stabilized glycol added		7	9	_	l/min	note 3
pressure drop		_	300	_	kPa	(= 3 bar)
Cathode socket and accelerator anode						
air pressure drop		2	_	500	m³/min Pa	(= 5 mbar)
Output window						
air		1.0	2	_	m ³ /min	
pressure drop		_	2	_	kPa	(= 20 mbar)
Inlet water temperature		-	_	+50	°C	
Inlet air temperature		_	-	+45	°C	
MASS						
Net mass YK1250		300	kg			
Mounting frame with solenoid		750	kg			
Capability of hoist	min.	600	kg			
DIMENSIONS						
Tube and mounting frame		see d	rawings			
Required ground clearance for lifting hoist		min.	450 cm			
MOUNTING		verti	cal, cathode	e up		
R.F. CONNECTORS						
Input		N-ty	pe, female			

waveguide R9 (WR - 975)

Output

ACCESSORIES

A.	т	111	20	n	a	rts
\neg		u	96	μ	а	1 13

Waveguide coupling iris (if required) Magnet for getter-ion pump (factory fitted) note 4

note 5

note 6

B. Operational parts for first equipment

H.V. connection unit with four R3 sockets

Collector water cooling jacket Waveguide transition, R9

TE1200 TE1201

TE1202

Anode ring Cathode ring

TE1203

TE1163A

TE1204

Klystron trolley Focusing coil unit

TE1205

Connection cables heater/cathode

2 x TE1206A 1 x TE1206B 1 x TE1206C

heater accelerator anode

C. Parts for handling

note 7

Yoke for lifting TE1205 and TE1163

a klystron from any position

Yoke for lifting and turning

TE1208 TE1209

Supporting frame for storage and any

movement of burnt-out or spare klystrons in any position other than vertical

TE1210

Trolley for transportation of a klystron in horizontal position without lifting gear

TE1211

stem)					
}	max.	10% above	specif	fied values	
J	maxi	, 0, 0 0 0 0 0	, apaci.	19 /	
	max.	-61	kV		
	max.	-65	kV		
	max.	12	A		
	max.	41	kV	note 8	
	max.	45	kV		
	max.	10	mA		
	max.	700	kW	note 9	
	max.	10	kW		
	max.	10	kW		
	max.	420	kW		
	max.	1.2		note 10	
	max.	70	K		
min	tvn	max			
			kV		
			A		
_		_	kW		
_		70° <u>-</u>	kV		
_		5			
330		_			
_		500	kW	note 9	
55	57	_	%		
_	20	40	W		
-	-60.3	-	kV		
-	11.8	12	Α		
_	712	_	kW		
_	34.5	40	kV		
-	0.3	5	mA		
_	418	_	kW		
_	294	500	kW	note 9	
56	58	-	%		
-	9	40	W		
	- 330 - 55 - - - - - -	max. max. max. max. max. max. max. max.	max. 10% above max61 max65 max. 12 max. 41 max. 45 max. 10 max. 700 max. 10 max. 10 max. 10 max. 10 max. 10 max. 70 min. typ. max. 70 min. typ. max. 70 min. typ. day. 70 min.	max. 10% above specifications are specificated by max. 41 kV max. 45 kV max. 10 mA max. 700 kW max. 10 kW max. 1.2 max. 70 K min. typ. max. 70 k min. ty	max. 10% above specified values max61 kV max65 kV max. 12 A max. 41 kV note 8 max. 45 kV max. 10 mA max. 700 kW note 9 max. 10 kW max. 10 kW max. 10 kW max. 70 K min. typ. max54 -56 -57 kV 0 10.4 11 A - 614 - kW - 31 - kV - 1 5 mA 330 350 - kW - 264 500 kW note 9 55 57 - % - 20 40 W - 60.3 - kV - 11.8 12 A - 712 - kW - 34.5 40 kV - 0.3 5 mA - 418 - kW - 294 500 kW note 9 56 58 - %

PERFORMANCE DATA

Phase shift	t to cathode current	<	20	O/A	
Phase shift	t to rel. cathode voltage	<	20	0/%	
Phase shift	t to r.f. drive	<	12	O/dB	
R.F. outp	ut to rel. cathode voltage	<	0.3	dB/%	
Spurious r	noise amplitude				
for f	< 300 Hz	<	3	%	
for f =	300 to 1000 Hz	<	1	%	
for f	> 1000 Hz	<	0.5	%	

Notes

- 1. When switching on the heater voltage, the heater current must never exceed a peak value of 60 A.
- 2. Required values are given with each tube.
- 3. For further recommendations please contact the tube manufacturer.
- 4. Separately shipped together with each tube and to be returned together with each burnt-out tube.
- It is recommended to return the coaxial waveguide transition together with burnt-out tube for inspection.
- 6. R3 sockets are only usable together with optional R3 plugs.
- 7. These parts are needed for all handling operations at the site (only one set required).
- 8. The accelerator anode voltage may never become positive with respect to the body (ground).
- It must be observed that for operation with reduced r.f. drive the maximum value for collector dissipation is not exceeded.
- 10. For reflections exceeding this value please contact the tube manufacturer.

INSTALLATION AND OPERATION REQUIREMENTS

A. Required interlocks

- 1. Fast switch-off of the drive power within 10 ms has to be done if the arc detector and/or r.f. reflection indicator is activated. An arc detector must be provided at the knee of the output wavequide.
- 2. A fast switch-off of the beam supply has to be provided when one of the following situations occurs:
 - a) the beam current increases rapidly,
 - b) the solenoid current deviates by more than ±5% from the adjusted value. The switching sensors and the discharge facilities for the power supply must be designed so that a copper wire of 0.35 mm diameter, connected to the power supply instead of the klystron

(length approx. 1 cm/kV), will not be destroyed, if the full operating voltage is switched on and applied to the wire.

- 3. The mains for the beam power supply has to be switched off within 100 ms when one of the following situations occur:
 - a) the beam current either exceeds the limiting value or increases by more than 30% or max. 2 A above the adjusted value,
 - b) the pump current exceeds $10 \mu A$,
 - c) the collector temperature monitor (with internal thermocouple) is activated (switch-off value adjustable between 30 and 60 K above the water inlet temperature),
 - d) the monitored temperarure differences between inlet and outlet in the collector and/or body cooling circuits are too high;

max. values permitted:

 $\Delta \theta = 15 \text{ K}$

body circuit I

collector

 $\Delta \theta = 15 \text{ K}$

body circuit II

 $\Delta\theta = 15 \text{ K}$

- e) the water flow of the collector and body cooling circuits decreases below the required minimum value.
- f) the air flow for the r.f. window and cathode cooling decreases below the required minimum value.
- 4. Switch-off the heater voltage for pump current > 4 mA.

Restarting is not allowed within 10 s after any interruption.

B. Switching-on and off sequence

Switching-on sequence

- 1. Cathode cooling on.
- 2. Getter-ion pump supply on.
- 3. Check that the pump current is $< 10 \mu A$.
- 4. Heater voltage supply on.
- Wait for preheating time (min. 15 minutes).
- 6. Cooling air r.f. window on.
- 7. Cooling body circuits I and II on.
- 8. Collector cooling supply on.
- 9. Solenoid current supply on.
- 10. Check that the heater current has reached the adjusted value ± 0.5 A.
- 11. R.F. drive on.
- 12. Beam voltage supply on.

Switching-off sequence

- 1. Beam voltage supply off.
- 2. All other supplies and cooling circuits off.

C. Radiation dangers

R.F. radiation

R.F. power may be emitted not only through the normal output coupling but also through other apertures (for example, r.f. leaks). This r.f. power may be sufficiently intense to cause danger to the human body, particularly to the eyes. Such radiation may be increased if the tube is functioning incorrectly.

X-radiation

A highly dangerous intensity of X-rays may be emitted by tubes operating at voltages higher than approximately 5 kV. Adequate protection (X-ray shielding) for the operator is then necessary. The emisson intensity of X-rays may correspond to a value of voltage much higher than that expected from the actual value applied to the tube.

Poor focusing may result in excessive X-radiation.

This tube and accessories are equipped with a lead shielding which under normal conditions reduces the radiation values below 0.75 mR/h, measured at a distance of 1 m from the tube assembly.

U.H.F. POWER KLYSTRONS

For u.h.f. band IV/V vision transmitters and sound transmitters.

Metal-ceramic construction, four external cavities, electromagnetic focusing and a high-stability dispenser type cathode.

Suitable for vapour, vapour-condensation or water cooling.

Comprising a non-intercepting annular beam control electrode (ABC) for low-voltage beam modulation.

QUICK REFERENCE DATA

Frequency range	470 to 810	MHz	note 10	
Output power as vision transmitter YK1263	40 and 55	kW		
YK1265	40, 55 and 60	kW		
Cooling	vapour, vapour	condens	ation, or water	

This data must be read in conjunction with GENERAL OPERATIONAL RECOMMENDATIONS for KLYSTRONS.

HEATING: indirect by d.c.						notes
Cathode	dispe	enser type				
Heater voltage	V_{f}		8.5	V	±3 %	
Heater current	l _f	~	24 to 28	A		1
Cold heater resistance	R_{fo}	~	30	mS	2	
Waiting time from cold, $V_f = 0 \text{ V}$ from black heat, $V_f = 6 \text{ V}$	t _w	min. min.	300	s s		2
FOCUSING						
Focusing coil current			10 to 12	A		
Resistance of focusing coils cold (20 °C) operating at an ambient temperature of 20 °C		<	7.2 to 9.5 11	Ω		
BEAM CONTROL						6, 7
The klystrons comprise a non-intercepting annular for low-voltage beam modulation. See Fig. 7. Additionally the accelerator electrode voltage allo current between 0 and 100%.				rode		
GETTER-ION PUMP SUPPLY						3
Pump voltage, no-load condition			3 to 4	kV		
Internal resistance of supply			300	kΩ		

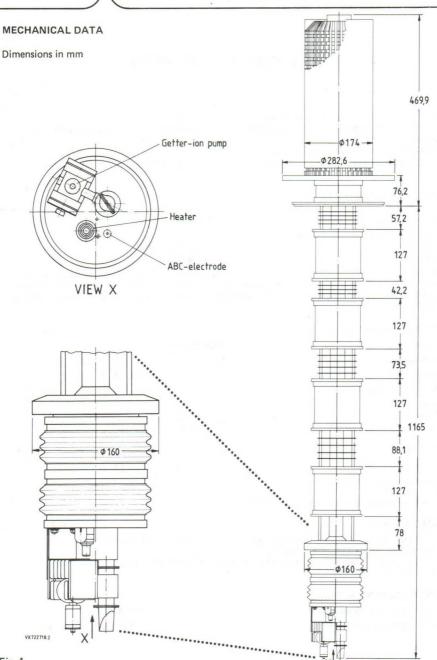


Fig. 1.

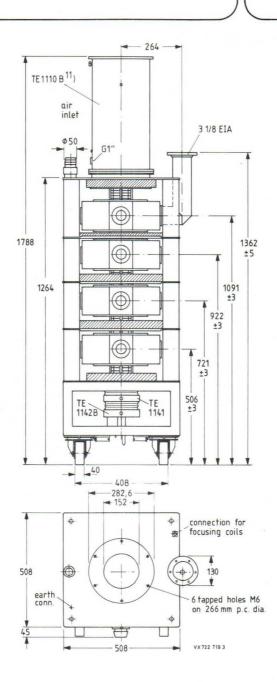


Fig. 2.

MASS AND DIMENSIONS

Klystron

net approx. 79 kg approx. 232 kg gross

outline dimensions

of packing (cm) 182 x 75 x 75

Cavities approx. 45 kg Magnet frame with coils approx. 230 kg

MOUNTING

Mounting position: vertical with collector up.

To remove the tube from the magnet frame a total free height of 3 m, excluding hoist, is required.

COOLING

YK1263 Cavities 1, 2, 3 and 4, drift tubes

4 and 5 and cathode socket via

manifold

YK1265 Cavities 1, 2, 3 and 4, drift tube 4

and cathode socket via manifold

Drift tube 5, seperate cooling

Cathode socket only, during black heat

Collector

forced air, T; max. 50 °C

 $q \approx 2 \text{ m}^3/\text{min}, \Delta p = 1600 \text{ Pa} (16 \text{ mbar})$

forced air, T; max. 50 °C

 $q \approx 3 \text{ m}^3/\text{min}, \Delta p = 1600 \text{ Pa} (16 \text{ mbar})$

forced air, T_i max. 50 o C, $q \approx 3 \text{ m}^3/\text{min}$,

flow area ≈ 50 cm²

forced air, T_i max. 50 °C, $q \approx 0.15 \text{ m}^3/\text{min}$

vapour with boiler TE1110B, note 4

volume of water converted to steam: 27 cm3/min per kW collector dissipation resulting in 43 l/min

steam per kW collector dissipation

water or vapour condensation (with water jacket

TE1194B) q = 35 to 60 ℓ /min, T_O max 90 °C, see Fig. 3. For 60 ℓ /min, Δp = 100 kPa (1 bar)

ACCESSORIES

Collector radiation suppressor	TE1221
Anode ring	TE1141
Cathode ring	TE1142
Spark gap	TE1183

Set of connectors

790 to 1000 MHz

(heater, cathode, accelerator electrode, getter-ion pump) TE1146
Cavities 4 x TE1224

	front panel contro	olled di	direct controlled	
Inlet coupler and load coupler for cavities 2 and 3	3 x TE1226 and 3 x TE1226D	3	x TE122	26
Output coupler, 3 1/8 inch, 90° elbow		TE1227		
Magnet frame with coils		TE1222		
Collector jacket for water or vapour condensation c	ooling	TE1194B		note 11
Boiler for vapour cooling		TE1110B		note 11
Tool set		TE1190		
Temperature sensor		TE1199		
Arc detector		TE1107B		
Recommended circulators (optional) 470 to 600 MHz 600 to 800 MHz		1551 (T100/ 1561 (T100/		

2722 162 03261 (T100/V-3-N)

LIMITING VALUES (Absolute maximum rating system)

Heater voltage	max. 9.5 V
Beam voltage	max. 28 kV
Cold cathode voltage	max30 kV
Beam current	max. 7 A note 6
Body current	max. 150 mA
Accelerator electrode current	max. 6 mA note 5
Collector dissipation	max. 150 kW
Load VSWR	max. 1.5
Temperature of tube envelope	max. 175 °C
Static pressure in the cooling system TE1194B	max. 600 kPa (6 bar)
ABC-electrode voltage with respect to cathode	max. – 1.4 kV

PERFORMANCE DATA

of ABC-electrode	min.	typ.	max.	
Capacity	80	90	100	pF
D.C. current at -1000 V*	_		1	mA

PRODUCT SAFETY

1. X-radiation

Correct operation of the tube can be guaranteed only if a set of accessories, approved by the tube manufacturer, is used.

The operating tube generates X-rays which can penetrate the ceramic parts of the tube envelope. In order to reduce the radiation at any accessible points to an officially acceptable, non-dangerous level the tube must be shielded and any possible radiation path blocked by at least 1 mm of brass or an equivalent depth of non-magnetic X-ray absorbing material. The proper use of accessories will provide the necessary shielding.

2. R.F. radiation

R.F. power may be emitted through apertures other than the normal output coupling (for example r.f. leaks). This r.f. power may be sufficiently intense to cause danger to the human body, particularly to the eyes. Such radiation may be increased if the tube is functioning incorrectly.

Instruction manual

For detailed mounting and tuning instructions see klystron instruction manual, delivered with each tube.

^{*} The d.c. electrode current may rise up to max. 2 mA during life time. The applied modulator should be designed for an ABC-electrode current of at least 2 mA.

TYPICAL OPERATING CONDITIONS (modulation el	ectrode at	cathode	potential)	
As 40 kW vision transmitter					notes
Standard CCIR-G					
Channel	21	45	68		
Output power, peak sync.	45	45	45	kW	
Beam voltage	21	22.5	24.5	kV	
Beam current	5.2	4.45	4.15	Α	6,7
Accelerator to cathode voltage	19	17.5	16.5	kV	5
Body current without drive	8	5	5	mA	
at black level	60	30	30	mA	
Focusing coil current	11	10.5	10	Α	
Drive power, peak sync. max.	20	10	10	W	8
Operating efficiency	41	45	44	%	
Bandwidth at -1 dB points	7	7	7	MHz	9
As 55 kW vision transmitter					
Standard RTMA-M and RTMA-M*					
Channel	14	45	69		
Output power, peak sync.	58	58	58	kW	
Beam voltage	23	25	26	kV	
Beam current	6.0	5.05	4.85	A	6,7
Accelerator to cathode voltage	21.5	19	18.5	kV	5
Body current without drive at 58 kW peak sync., black level	8 80	5 40	5 40	mA mA	
Focusing coil current	11.5	11	10.5	Α	
Drive power, peak sync.	20	10	10	W	
Operating efficiency	42	46	46	%	
Bandwidth at −1 dB points	7	7	7	MHz	9

As 60 kW vision transmitter (YK1265 o	nly)					notes
Standard*		M/G	M/G	M/G		
Channel		14/21	42/42	69/62		
Output power, peak sync.		64	64	64	kW	
Beam voltage		24.5	25.5	26.5	kV	
Beam current		6.1	5.3	5	A	6,7
Accelerator to cathode voltage		21.5	20	18.5	kV	5
Body current						
without drive at 64 kW peak sync., black level		8 80	7 60	5 40	mA mA	
Focusing coil current		11.5	11	10.5	A	
Drive power, peak sync.		20	10	10	W	8
Operating efficiency		43	47.5	48	%	
Bandwidth at -1 dB points		7	7	7	MHz	9
As 8 kW FM sound transmitter						
Output power		9	9	9	kW	
Beam voltage		21	22.5	24.5	kV	
Beam current		1.15	1.0	0.95	A	
Accelerator to cathode voltage		7	6.5	6	kV	5
Focusing coil current		9	9	9	A	
Drive power		5	5	5	W	8
Bandwidth at -1 dB points		1	1	1	MHz	
As 11 kW FM sound transmitter						
Output power		12	12	12	kW	
Beam voltage		23	25	26	kV	
Beam current		1.4	1.2	1.1	A	
Accelerator to cathode voltage		8	7.5	7	kV	7
Focusing coil current		9	9	9	A	
Drive power		5	5	5	W	8
Bandwidth at -1 dB points		1	1	1	MHz	
As 12 kW FM sound transmitter						
Output power		13	13	13	kW	
Beam voltage		24.5	25.5	26.5	kV	
Beam current		1.4	1.3	1.2	A	
Accelerator to cathode voltage		8	7.5	7.5	kV	7
Focusing coil current		9	9	9	A	
Drive power		5	5	5	W	8
Bandwidth at -1 dB points		1	1	1	MHz	

^{*} Standards: RTMA-M, RTMA-M* and CCIR-G.

As 60 kW vision transmitter (YK1265 only)					notes
Standard*	M/G	M/G	M/G		
Channel	14/21	42/42	69/62		
Output power, peak sync.	64	64	64	kW	
Saturated output power	68	68	68	kW	
Beam voltage	25	26	27	kV	
Beam current	6.3	5.5	5.25	A	6, 7
Accelerator to cathode voltage	22	20	19.5	kV	5
Body current without drive at 64 kW peak sync., black level	8 80	7 60	5 40	mA mA	
Focusing coil current	11	10.5	10	A	
Drive power, peak sync.	20	10	10	W	8
Saturated efficiency	43	47.5	48	%	
Bandwidth at -1 dB points	7	7	7	MHz	9
As 6 kW FM sound transmitter					
Output power	6.4	6.4	6.4	kW	
Beam voltage	25	26	27	kV	
Beam current	0.85	0.77	0.72	Α	
Accelerator to cathode voltage	5.3	5.0	4.8	kV	5
Focusing coil current	10	9.5	9	A	
Drive power	5	5	5	W	8

CW operation for synchrotron radiation sources (YK1265 only)

Frequency	≈ 500	≈ 500	MHz
Output power	52	42	kW
Beam voltage	23	21	kV
Beam current	5.6	4.9	Α

^{*}Standards: RTMA-M, RTMA-M* and CCIR-G.

Notes

- 1. When switching on the heater voltage, the heater current must never exceed a peak value of 65 A.
- 2. In case of a mains failure an interruption up to 30 s can be tolerated without new waiting time. After min. 10 minutes of stand-by heating time at 6 V (black heat), the beam current may be switched on; the heater voltage must be increased to its nominal value of 8.5 V simultaneously. Continuous black heat periods should not exceed two weeks and should be separated by similar periods of rest or full operation.
- To ensure that the klystron is always ready for operation, operate the ion getter pump at least every 6 months (preferably every 3 months) during storage. For details see klystron instruction manual.
- 4. In order to avoid corrosion of the cooling system, coolant water must be pure and deionized (resistivity min. 100 k Ω ·cm).
- 5. The accelerator electrode voltage must not be positive with respect to the body (ground).
- 6. For beam current (tolerance ± 5%) versus accelerator-to-cathode voltage, see Fig. 4.
- A voltage divider for adjusting the beam current should be dimensioned on the basis of an accelerator electrode current of max. 1.5 mA.
- 8. The drive power is defined as the power delivered to a matched load.
- Variation of the signal level between black and white at any sideband frequency may cause a reaction of the peak sync. level. Proper tube design limits this reaction to less than 0.5 dB.
- 10. For operation in the frequency range 810 to 860 MHz please contact tube manufacturer.
- TE1110B with 1" inlet and steam outlet on top. TE1194B with two 1" tube fittings SWAGE LOCK SS-1610-1-16 at one side of the cooling jacket.

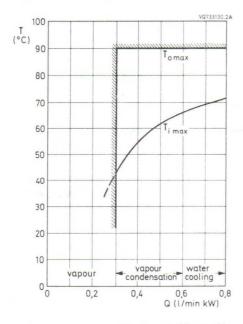


Fig. 3.

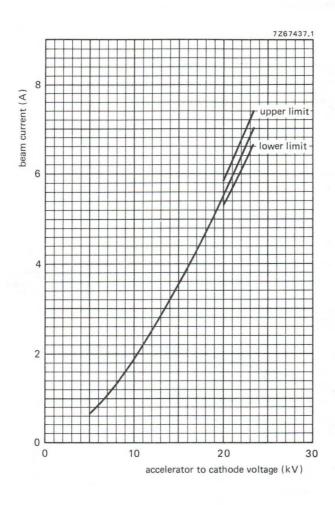
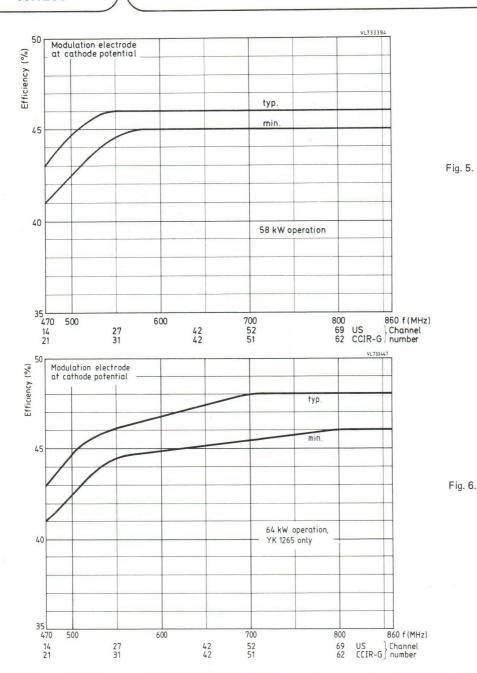



Fig. 4.

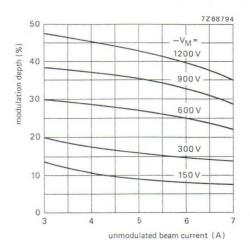


Fig. 7 ABC-operation. Parameter: modulation voltage $-V_{\mbox{\scriptsize M}}$ (with respect to cathode).

U.H.F. POWER KLYSTRONS

For u.h.f. band IV/V vision transmitters and sound transmitters.

Metal-ceramic construction, four external cavities, electromagnetic focusing and a high-stability dispenser type cathode.

Suitable for vapour, vapour-condensation or water cooling.

Comprising a non-intercepting annular beam control electrode (ABC) for low-voltage beam modulation.

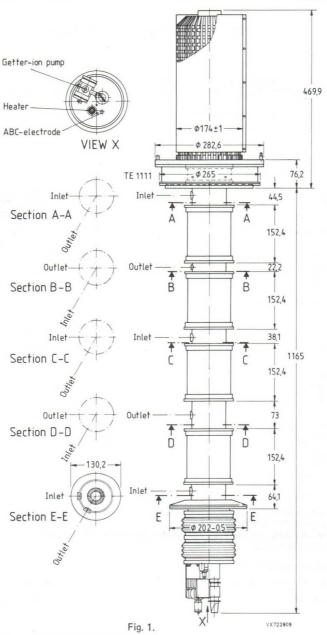
QUICK REFERENCE DATA

HEATING indicate build

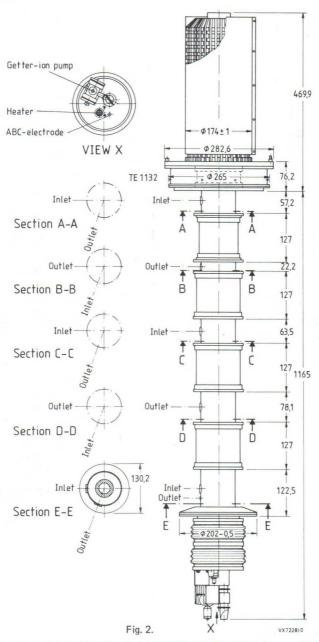
Frequency range	
YK1295	470 to 610 MHz
YK1296	590 to 720 MHz
YK1297	710 to 860 MHz
Output power as vision transmitter	40 and 55 kW
Cooling	vapour, vapour condensation, or water

This data must be read in conjunction with GENERAL OPERATIONAL RECOMMENDATIONS for KLYSTRONS.

HEATING: Indirect by d.c.					notes
Cathode	disp	enser type	е		
Heater voltage	V_{f}	≈	8.5	V ±3 %	
Heater current	1 _f	≈	22 to 27	A	1
Cold heater resistance	Rfo	~	30	$m\Omega$	
Waiting time					2
at $V_f = 8.5 \text{ V}$	tw	min.	300	S	
at $V_f = 6.0 \text{ V (black heat)}$	tw	min.	0	S	
FOCUSING: electromagnetic					
Focusing coil current			9 to 12	A	
Resistance of focusing coils					
cold (20 °C)			7.2 to 9.5	Ω	
operating at an ambient temperature of 20 $^{ m o}{ m C}$		\leq	11	Ω	

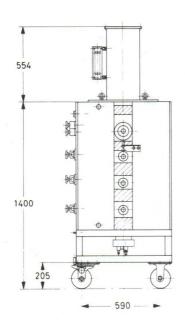

BEAM CONTROL

The klystron comprises a non-intercepting annular beam control (ABC) electrode for low-voltage beam modulation. See Fig. 5. Additionally the accelerator electrode voltage allows adjustment of the beam current between 0 and 100%.


GETTER-ION PUMP SUPPLY			3
Pump voltage, no-load condition	3 to 4	kV	
Internal resistance of supply	300	$k\Omega$	

MECHANICAL DATA YK1295

Dimensions in mm



YK1296, YK1297

Mechanical outlines of trolley

Dimensions in mm

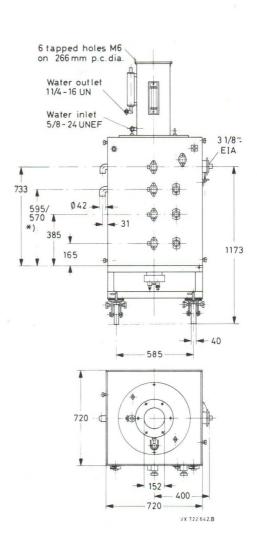


Fig. 3.

^{*} YK1295 = 570 mm. YK1296/1297 = 595 mm.

COOLING

Cathode socket

accelerator electrode

Collector

air; $q \approx 0.15 \text{ m}^3/\text{min}$, T_i max. 40 °C vapour (with boiler TE1110), note 4

volume of water converted to steam: 27 cm3/min per kW collector dissipation resulting in 43 l/min

steam per kW collector dissipation

water or vapour condensation (with cooler TE1194)

 $q = 35 \text{ to } 60 \text{ } \ell/\text{min}, T_0 \text{ max } 80 \text{ }^{0}\text{C},$

Drift tubes water; rate of flow to drift tubes and collector

connected in series q ≈ 9 l/min, T; max. 80 °C,

 $\Delta p = 200 \text{ kPa} (2 \text{ bar})$

forced air; $q = 1.5 \text{ m}^3/\text{min}$, $\Delta p = 250 \text{ Pa}$ (2.5 mbar) Cavities 3 and 4

kg

kq

T: max. 45 °C

MASS AND DIMENSIONS

Klystron

net approx. 80 gross approx. 230

outline dimensions

of packing (cm)

182 x 75 x 75

Cavities

approx. 45 ka

Magnet frame with coils approx. 885 kg

MOUNTING

Mounting position: vertical with collector up.

To remove the tube from the magnet frame a total free height of 3.5 m, excluding hoist, is required.

PRODUCT SAFETY

1. X-radiation

Correct operation of the tube can be guaranteed only if a set of accessories, approved by the tube manufacturer, is used.

The operating tube generates X-rays which can penetrate the ceramic parts of the tube envelope. In order to reduce the radiation at any accessible points to an officially acceptable, non-dangerous level the tube must be shielded and any possible radiation path blocked by at least 1 mm of brass or an equivalent depth of non-magnetic X-ray absorbing material. The proper use of accessories will provide the necessary shielding.

2. R.F. radiation

R.F. power may be emitted through apertures other than the normal output coupling (for example r.f. leaks). This r.f. power may be sufficiently intense to cause danger to the human body, particularly to the eyes. Such radiation may be increased if the tube is functioning incorrectly.

Instruction manual

For detailed mounting and tuning instructions see klystron instruction manual, delivered with each tube.

ACCESSORIES (note 5)

A. A	Accessories	required	for	first	equipment	
------	-------------	----------	-----	-------	-----------	--

A. Accessories required for this equipment						
		YK1295		YK1296		YK1297
Collector radiation suppressor		TE1111		TE1132		TE1195
Accelerator electrode ring		TE1141		TE1141		TE1141
Cathode ring		TE1142B		TE1142B		TE1142B
Set of sealing rings		TE1147		TE1147		TE1147
Magnet flux ring		TE1138		TE1138		TE1138
Spark gap		TE1140		TE1140		TE1140
Set of connectors (heater, cathode,						
acc. electrode, getter-ion pump)		TE1146		TE1146		TE1146
Extension pipes		TE1133A		TE1133A		TE1133A
for drift tubes	2x	TE1133B	2x	TE1133B	2x	TE1133B
Water interconnecting pipes between drift tubes						
$T_2 - T_2$		TE1134A		TE1135A		TE1135A
$T_2 - T_3$		TE1134B		TE1135B		TE1135B
$T_3 - T_4$		TE1134C		TE1135C		TE1135C
$T_4 - T_5$		TE1134D		TE1135D		TE1135D
Flexible water pipes						
between tube and boiler						
for vapour cooling		TE1145A		TE1145A		TE1145A
between frame and tube tube outlet for water cooling		TE1145B TE1145C		TE1145B TE1145C		TE1145B TE1145C
Boiler for vapour cooling		TE1110		TE1110		TE1110
or						
Cooler for water cooling		TE1194		TE1194		TE1194
Cavities	3x	TE1121D	3x	TE1098A	3x	TE1191A
	1x	TE1121D	1x	TE1098D	1x	TE1191B
Input coupler		TE1122A		TE1102		TE1102
Load coupler for cavities 2 and 3	2x	TE1122B	2x	TE1102	2x	TE1102
Blanking plates	3x	TE1157	3x	TE1157	3x	TE1157
Output coupler for cavity 4		TE1123		TE1105		TE1196
Arc detector		TE1107		TE1107		TE1107
Magnet frame with coils		TE1108		TE1108		TE1108
Tool set		TE1137		TE1137		TE1137
B. Accessories to be ordered separately when replacing equivalent other brand types						
Magnet flux ring		TE1138		TE1138		-
Spark gap		TE1140		TE1140		THE PARTY OF
Set of connectors (heater, cathode, acc. electrode, getter-ion pump)		TE1146		TE1146		TE1146

YK1296 YK1297

C. Spare and optional parts	YK1295		YH	<1296	YK1297
Set of connectors (heater, cathode,					
acc. electrode, getter-ion pump)	TE1146		TE	1146	TE1146
Set of sealing rings	TE1147		TE	1147	TE1147
Water protection shield	TE1139		TE	1139	TE1139
Recommended circulators	0700 40	0.04554	/=400/11	(NI)	
470 to 600 MHz 600 to 800 MHz			(T100/IV		
790 to 1000 MHz			(T100/V		
LIMITING VALUES (Absolute maximum rating	system)				
Heater voltage	max.	9.5	V		
Beam voltage	max.	28	kV		
Cold cathode voltage	max.	-30	kV		
Beam current	max.	7	Α		
Body current	max.	150	mA		
Accelerator electrode current	max.	6	mA	note 7	
Collector dissipation	max.	150	kW		
Load VSWR	max.	1.5			
Temperature of tube envelope	max.	175	°C		
Static pressure in the cooling system	max.	600	kPa {	(6 bar)	
ABC-electrode voltage with respect to cathode	max.	-1.4	kV	, note o	
PERFORMANCE DATA					
of ABC-electrode	min.	typ.	max.		
Capacity	80	90	100	pF	
D.C. current at -1000 V*	_		1	mA	

^{*} The d.c. electrode current may rise up to max. 2 mA during life time. The applied modulator should be designed for an ABC-electrode current of at least 2 mA.

TYPICAL OPERATING CONDITIONS

As 55 kW/40 kW vision transmitter (standards: RTMA-M, RTMA-M* and CCIR-G)

			YK1	295/Y	K1296		YK129	97		
Output power, peak syr	nc.		58	58	45	58	58	45	kW	
Beam voltage			22.5	26	22.5	23.5	27	25.5	kV	
Beam current			6.4	4.85	3.8	5.9	4.9	3.9	Α	note 8
Accelerator to cathode	voltage		≈22.5	≈18.5	≈16	≈21	≈19	≈16	kV	
Body current										
without drive at black level			15 40	15 40	15 40	15 40	15 40		mA mA	
Focusing coil current			10.5	10.5	9.5	10.5	10.5	10	Α	
Drive power, peak sync. Standard*	M	G								
YK1295 - channel	14	21	10	6	6	_	_	_	W	note 9
channel	37	38	7	4	4	_	_	_	W	note 9
YK1296 - channel	37	36	7 5	4	4	_	-	-	W	note 9
channel	52	51	5	3		2	2	2	W	note 9
YK1297			_	_	-	8	8		MHz	note 10
Bandwidth at -1 dB po	ints		8	8	8			70		
Differential gain			75	70	70	70	70			note 11
Differential phase			6	10	10	10	10		deg	note 11
Linearity			65	60	60	60	60	60		note 12
Operating efficiency			40	46	46.5	42	44	45		
Saturation output powe	r		63	60	46.5	60	60	46.5		
Saturation efficiency			44	47.5	48	43	45	46.5	%	
As 11 kW/8 kW FM sou	nd transi	mitter								
Output power			12	12	9	12	12	9	kW	
Beam voltage			22.5	26	25.5	23.5	27	25.5	kV	
Beam current			1.5	1.2	1.3	1.5	1.2	1.3	A	
Accelerator cathode vol-	tage		8.5	7.5	≈ 8	8.5	7.5	≈ 8	kV	note 13
Focusing coil current			9	9	9	9	9	9	Α	
Drive power			1.5	1.5	1.5	1.5	1.5	1.5	W	note 9
Bandwidth at -1 dB po	ints		1	1	1	1	1	1	MHz	

^{*} Standards: RTMA-M, RTMA-M* and CCIR-G.

Notes

- 1. When switching on the heater voltage, the heater current must never exceed a peak value of 65 A.
- 2. In case of a mains failure an interruption up to 30 s can be tolerated without new waiting time. After min. 10 minutes of stand-by heating time at 6 V (black heat), the beam current may be switched on; the heater voltage must be increased to its nominal value of 8.5 V simultaneously. Continuous black heat periods should not exceed two weeks and should be separated by similar periods of rest or full operation.
- To ensure that the klystron is always ready for operation, operate the ion getter pump at least every 6 months (preferably every 3 months) during storage. For details see klystron instruction manual.
- 4. In order to avoid corrosion of the cooling system, coolant water must be pure and deionized (resistivity min. 100 k Ω ·cm).
- 5. Correct operation of the tube can be guaranteed only if a set of accessories, approved by the tube manufacturer, is used. The operating tube—generates X-rays which can penetrate the ceramic parts of the tube envelope. In order to reduce the radiation at any accessible points to an officially admissible, non-dangerous level the tube must be shielded and any possible radiation path must be blocked by at least 1 mm of brass or an equivalent portion of non-magnetic X-ray absorbing material. The proper use of our accessory parts will provide the necessary shielding.
- 6. Static pressure in the body-cooling system and in the water-cooling jacket TE1194.
- 7. The accelerator electrode voltage must not be positive with respect to the body (ground).
- 8. If the accelerator electrode is connected to the body (ground) via 10 k Ω resistor, the beam current is within \pm 5% of the value given in the graph of Fig. 4.
- 9. The drive power is defined as the power delivered to a matched load.
- Variation of the signal level between black and white at any sideband frequency may cause a reaction of the peak sync. level. Proper tube design limits this reaction to less than 0.5 dB.
- 11. Measured with a sawtooth signal from black level to peak white occuring at each line and superimposed colour subcarrier with a 10 % peak to peak amplitude.
- 12. Measured with a ten-step staircase signal from black level to peak with occuring at each line.
- A voltage divider for adjusting the beam current should be dimensioned on the basis of an accelerator electrode current of max. 1.5 mA.

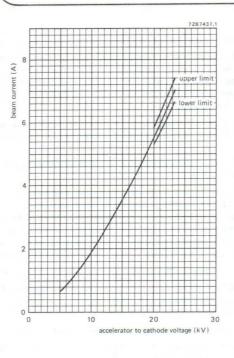


Fig. 4.

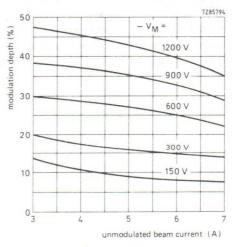
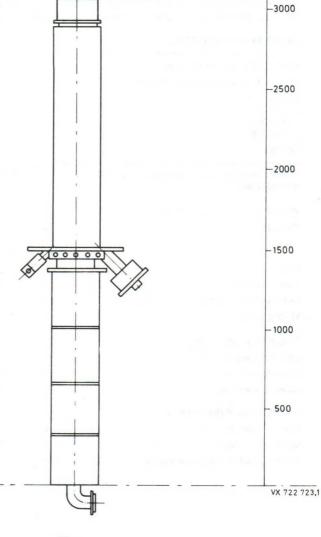


Fig. 5 ABC-operation. Parameter: modulation voltage $-\boldsymbol{V}_{\boldsymbol{M}}$ (with respect to cathode).

CONTINUOUS-WAVE HIGH-POWER KLYSTRONS

Water cooled, high efficiency, fixed frequency, continuous-wave high-power klystrons in metal-ceramic construction, for use in scientific and industrial applications. The tubes have internal cavities, solenoid focusing, beam control by accelerator anode and a high stability dispenser-type cathode.

QUICK REFERENCE DATA


Centre frequency (fixed tuned)	499.7	MHz
Bandwidth at saturation (-1 dB points)	2	MHz
Output power YK1300 YK1301 YK1305	500 to 600 600 to 800 ≤ 350	kW kW kW
Cooling	water	

This data must be read in conjunction with GENERAL OPERATIONAL RECOMMENDATIONS for KLYSTRONS.

HEATING: indirect by a.c. or d.c.

Cathode					dispenser type		
		min.	typ.	max.			
Heater voltage	V_{f}	22	25	27	V		
Heater current	If	20	23	25	A	notes 1, 2	
Cold heater resistance	R _{fo}	_	100	_	$m\Omega$		
Waiting time	t_{w}	15	_	_	minutes		
FOCUSING: electromagnetic							
Solenoid current		7	9	15	Α		
Solenoid voltage		_	140	220	V		
Solenoid resistance		_	15	_	Ω		
GETTER-ION PUMP SUPPLY							
Operating voltage		3	3.3	4	kV		
Operating current		_	10-3	80	mA		
Internal resistance of power sup	pply	25	300	_	kΩ		

YK1300 YK1301 YK1305 MECHANICAL DATA Dimensions in mm TE 1174 A

-3500

Fig. 1.

Tube mounted in the mounting frame with solenoid.

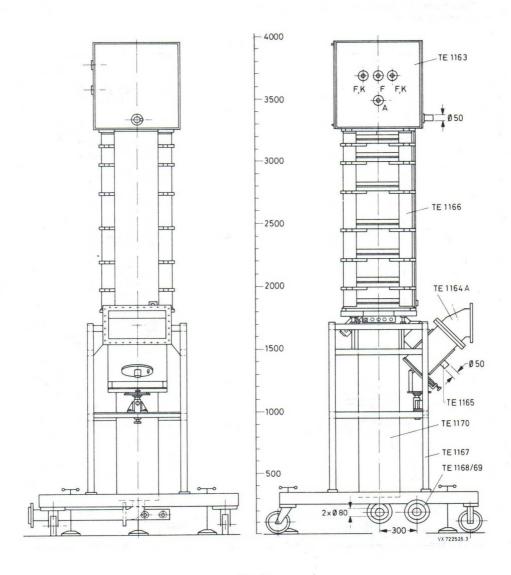


Fig. 2.

MECHANICAL DATA (continued)

Tube mounted in the mounting frame with solenoid. Dimensions in mm

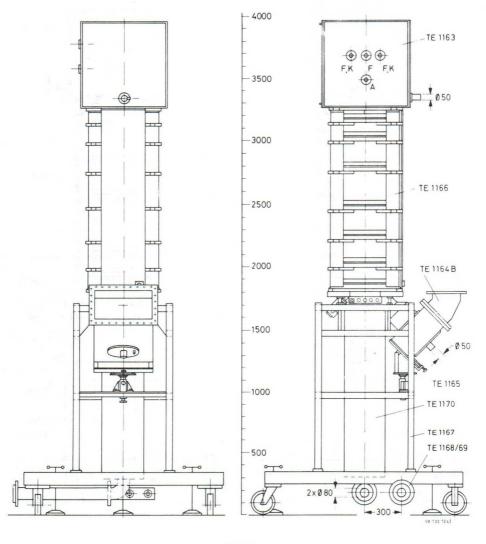


Fig. 3.

Drawing shows klystron and trolley without operational lead-shielding.

COOLING	min.	typ.	max.	,	
Collector demineralized or distilled water with 10% stabilized glycol added					
YK1300, YK1301 YK1305	750 200	900 500	1000 700	l/min	note 3
pressure drop	_	200		kPa	(= 2 bar)
Body circuit I demineralized or distilled water					
with 10% stabilized glycol added	7	10	-	ℓ/min	note 3
pressure drop	-	300	_	kPa	(= 3 bar)
Body circuit II demineralized or distilled water with 10% stabilized glycol added					
YK1300, YK1301	20	25	_	ℓ/min	
YK1305	15	18		ℓ/min	note 3
pressure drop	-	300	_	kPa	(= 3 bar)
Cathode socket and accelerator anode					
air	2	_	_	m ³ /mir	1
pressure drop	_	_	500	Pa	(= 5 mbar)
Output window					
air	0.6	1.2	_	m ³ /mir	1
pressure drop	_	9	_	kPa	(= 90 mbar)
Inlet water temperature		_	+50	°C	
Inlet air temperature		-	+45	°C	
MASS					
Net mass YK1300, YK1301, YK1305	400	kg			
Mounting frame with solenoid					
YK1300, YK1305	800	kg			
YK1301	900	kg			
Capability of hoist min.	600	kg			
DIMENSIONS					

MOUNTING

vertical, cathode up

see drawings

R.F. CONNECTORS

Tube and mounting frame

Input N-type, female

Required ground clearance for lifting hoist min. 580 cm

Output waveguide R5 (WR1800) mating flange UDR5

YK1300 YK1301 YK1305

ACCESSORIES

A. Tube	parts		
Collector	water	cooling	jacket

Waveguide coupling iris Magnet for getter-ion pump (factory fitted)

B. Operational parts for first equipment

Coaxial/waveguide transition, WR1800 with 450 elbow

YK1300

YK1301, YK1305

Window cooling air inlet

Accelerator anode ring (factory fitted)

Cathode ring

Corona protector H.V. connection unit with R3 sockets

YK1300

YK1301, YK1305

Klystron trolley with waveguide support

Focusing coil unit

YK1300 YK1301, YK1305

Water outlet collecting tube Set of interconnecting water hoses Connection cables,

heater/cathode heater accelerator anode

C. Optional parts

H.V. socket R3

H.V. cable with R3 plugs, length 6 m length 9 m

H.V. dummy plug R3 Collector water cooling jacket

D. Parts for handling Yoke for lifting TE1166 and TE1163

Yoke for lifting and turning a klystron from any position

Supporting frame for storage and any movement of burnt-out or spare klystrons in any position other than vertical Trolley for transportation of a klystron

in horizontal position without lifting gear

March 1985

TE1164A TE1164B

TE1165 TE1173

TE1174A TE1174B

TE1163A TE1163B TE1167

TE1166A TE1166B

TE1168 TE1169 2x TE1171A

> TE1171B TE1171C

4x TE1158

note 7

4x TE1160 4x TE1161 TE1170 note 7 note 7

note 7

note 4 note 4

note 5

note 5

note 6

note 6

4x TE1159

note 8

TE1175

TE1176

TE1177

TE1178

LIMITING VALUES (Absolute maximum rating sy	stem)				
Heater voltage	}	max. 10%	6 above	e specifie	ed values
Heater current	J				
Cathode voltage to body (ground)		max.	-65	kV	
Cold cathode voltage to body (ground)		max.	-75	kV	
Cathode current		max.	18	A	
Accelerator anode voltage to cathode		max.	55	kV	note 9
Cold accelerator anode voltage to cathode		max.	65	kV	
Accelerator anode current		max.	10	mA	
Collector dissipation		max.	850	kW	note 10
Dissipation body circuit I		max.	10	kW	
Dissipation body circuit II		max.	15	kW	
C.W. output power		max.	630	kW	
Load VSWR		max.	1.2		note 12
Temperature rise, window cooling air. flow		max.	30	K	
TYPICAL OPERATING CONDITIONS					
500 kW operation into matched load	min.	typ.	max.		
Cathode voltage to body (ground)	-60	-62	-63	kV	
Cathode current	4	14	15	Α	note 13
Input power, d.c.	_	867	_	kW	
Accelerator anode voltage to cathode	0	43	_	kV	note 13
Accelerator anode current	-	1	5	mA	
C.W. output power, VSWR ≤ 1.1	500	520	- "	kW	
Collector dissipation	-	347	850	kW	note 10
Efficiency	58	60	_	%	
C.W. drive power	-	25	50	W	
600 kW operation into matched load					
Cathode voltage to body (ground)	-62	-64	-65	kV	
Cathode current	4	15.9	16.5	Α	note 13
Input power, d.c.	_	1017	_	kW	
Accelerator anode voltage to cathode	0	47		kV	note 13
Accelerator anode current	_	1	5	mA	
C.W. output power, VSWR≤ 1.1	600	610	_	kW	
Collector dissipation	_	407	850	kW	note 10
Efficiency	57	60	_	%	
C.W. drive power	-	25	50	W	

LIMITING VALUES (Absolute max	imum rating system)				
Heater voltage	}	max. 109	% above	e speci	fied values
Heater current	J	maxi		о оросо.	
Cathode voltage to body (ground)		max.	-77	kV	
Cold cathode voltage to body (groun	d)	max.	-85	kV	
Cathode current		max.	18	Α	
Accelerator anode voltage to cathode	9	max.	65	kV	note 9
Cold accelerator anode voltage to cat	thode	max.	75	kV	
Accelerator anode current		max.	10	mA	
Collector dissipation		max.	850	kW	note 10
Dissipation body circuit I		max.	10	kW	
Dissipation body circuit II		max.	15	kW	
C.W. output power		max.	820	kW	
Load VSWR		max.	1.2		note 12
Temperature rise, window cooling air	r flow	max.	30	K	
TYPICAL OPERATING CONDITIO	NS				
800 kW operation into matched load	min.	typ.	max.		
Cathode voltage to body (ground)	-75	-76	-77	kV	
Cathode current	4	17	18	A	note 13
Input power, d.c.	_	1300	_	kW	1000
Accelerator anode voltage to cathode	0	47	50	kV	note 13
Accelerator anode current	_	2	5	mA	
C.W. output power, VSWR ≤ 1.1	750	800	820	kW	
Collector dissipation	_	500	850	kW	note 10
Efficiency	60	61	_	%	
C.W. drive power	_	40	70	W	

LIMITING VALUES (Absolute maximum rating syst	em)			
Heater voltage		100/		
Heater current	max.	10% above	e specit	ied values
Cathode voltage to body (ground)	max.	-50	kV	
Cold cathode voltage to body (ground)	max.	-55	kV	
Cathode current	max.	15	A	
Accelerator anode voltage to cathode	max.	45	kV	note 9
Cold accelerator anode voltage to cathode	max.	50	kV	
Accelerator anode current	max.	10	mA	
Collector dissipation	max.	400	kW	note 10
Dissipation body circuit I	max.	6	kW	
Dissipation body circuit II	max.	10	kW	
C.W. output power	max.	370	kW	
Load VSWR	max.	1.2		note 12
Temperature rise, window cooling air flow	max.	30	K	
TYPICAL OPERATING CONDITIONS				
350 kW operation into matched load m	in. typ.	max.		
Cathode voltage to body (ground)	47 –48	-49	kV	
Cathode current	4 12	13	A	note 13
Input power, d.c.	- 580	600	kW	
Accelerator anode voltage to cathode	0 36.5	_	kV	note 13
Accelerator anode current	- 1	5	mA	
C.W. output power, VSWR ≤ 1.1	15 330	370	kW	
Collector dissipation	_ 230	400	kW	note 10
Efficiency	55 58	_	%	
C.W. drive power	- 16	30	W	

PERFORMANCE DATA

Phase s	hift to ca	thode current	<	20	U/A
Phase s	hift to re	I. cathode voltage	<	20	0/%
Phase s	hift to r.f	. drive	<	12	o/dB
R.F. ou	tput to r	el. cathode voltage	<	0.3	dB/%
Spurio	us noise a	mplitude			
for f	<	300 Hz	≤	3	%
for f =	300 to	1000 Hz	<	1	%
for f	>	1000 Hz	<	0.5	%

Notes

- 1. When switching on the heater voltage, the heater current must never exceed a peak value of 65 A.
- 2. Required values are given with each tube.
- 3. For further recommendations please contact the tube manufacturer.
- 4. Separately shipped together with each tube and to be returned together with each burnt-out tube.
- It is recommended to return the coaxial/waveguide transition together with burnt-out tube for inspection.
- 6. R3 sockets are only usable together with optional accessories TE1159 and TE1160.
- Cable with R3 plugs on each end, to be fed into the R3 sockets of the H.V. connection unit TE1163
 and into R3 sockets TE1158 applied to the power supply. Dummy plugs are provided for cable
 termination on H.V. test of the cable set.
- 8. Parts are needed for all handling operations at the site and are to be ordered once for the site.
- 9. The accelerator anode voltage may never become positive with respect to the body (ground).
- It must be observed that for operation with reduced r.f. drive the maximum value for collector dissipation is not exceeded.
- 11. For reflections exceeding this value please contact the tube manufacturer.
- The klystron should not be operated with a cathode current below 4 A except for switching purposes.

INSTALLATION AND OPERATION REQUIREMENTS

A. Required interlocks

- Fast switch-off of the drive power within 10 ms has to be done if the arc detector and/or r.f.
 reflection indicator is activated. An arc detector must be provided at the knee of the output wavequide.
- 2. A fast switch-off of the beam supply has to be provided when one of the following situations occurs:
 - a) the beam current increases rapidly,
 - b) the solenoid current deviates by more than \pm 5% from the adjusted value.

The switching sensors and the discharge facilities for the power supply must be designed so that a copper wire of 0.35 mm diameter, connected to the power supply instead of the klystron (length approx. 1 cm/kV), will not be destroyed, if the full operating voltage is switched on and applied to the wire.

- The mains for the beam power supply has to be switched off within 100 ms when one of the following situations occur:
 - a) the beam current either exceeds the limiting value or increases by more than 30% or max. 2 A
 above the adjusted value,
 - b) the pump current exceeds $10 \mu A$,
 - c) the monitored temperature differences between inlet and outlet in the collector and/or body cooling circuits are too high;

max. values permitted: collector

 $\Delta \theta = 15 \text{ K}$

body circuit I

 $\Delta\theta = 15 \text{ K}$

body circuit II

 $\Delta\theta = 15 \text{ K}$

- d) the water flow of the collector and body cooling circuits decreases below the required minimum value,
- e) the air flow for the r.f. window and cathode cooling decreases below the required minimum value.
- 4. Switch-off the heater voltage for pump current > 4 mA.

Restarting is not allowed within 10 s of any interruption.

B. Switching-on and off sequence

Switching-on sequence

- 1. Cathode cooling on.
- 2. Getter-ion pump supply on.
- 3. Check that the pump current is $< 10 \,\mu\text{A}$.
- 4. Heater voltage supply on.
- 5. Wait for preheating time (min. 15 minutes).
- 6. Cooling air r.f. window on.
- 7. Cooling body circuits I and II on.
- 8. Collector cooling supply on.
- 9. Solenoid current supply on.
- 10. Check that the heater current has reached the adjusted value ± 0.5 A.
- 11. R.F. drive on.
- 12. Beam supply on.

Switching-off sequence

- Beam voltage supply off.
 - 2. All other supplies and cooling circuits off.

C. Radiation dangers

R.F. radiation

R.F. power may be emitted not only through the normal output coupling but also through other apertures (for example, r.f. leaks). This r.f. power may be sufficiently intense to cause danger to the human body, particularly to the eyes. Such radiation may be increased if the tube is functioning incorrectly.

X-radiation

A highly dangerous intensity of X-rays may be emitted by tubes operating at voltages higher than approximately 5 kV. Adequate protection (X-ray shielding) for the operator is then necessary. The emission intensity of X-rays may correspond to a value of voltage much higher than that expected from the actual value applied to the tube.

Poor focusing may result in excessive X-radiation.

These tubes and accessories are equipped with a lead shielding which under normal conditions reduces the radiation values below 0.75 mR/h, measured at a distance of 1 m from the tube assembly.

CONTINUOUS-WAVE HIGH-POWER KLYSTRON

Vapour cooled, high efficiency, fixed frequency, continuous-wave high-power klystrons in metal-ceramic construction, for use in scientific and industrial applications. The tubes have internal cavities, solenoid focusing, beam control by accelerator anode and a high stability dispenser-type cathode.

QUICK REFERENCE DATA

Centre frequency (fixed tuned)	508.6	MHz
Bandwidth at saturation (-1 dB points)	2	MHz
Output power	800	kW
Cooling	vapour	

This data must be read in conjunction with GENERAL OPERATIONAL RECOMMENDATIONS for KLYSTRONS.

HEATING : indirect by a.c. of

Cathode	dispens	ser type				notes
		min.	typ.	max.		
Heater voltage	V_{f}	22	25	27	V	
Heater current	If	20	23	25	A	1, 2
Cold heater resistance	R _{fo}	_	100	_	$m\Omega$	
Waiting time	t_{W}	15	_	_	minutes	
FOCUSING: electromagnetic						
Main focusing section						
Solenoid current		_	7	8	A	2, 3
Solenoid voltage		_	500	600	V	
Solenoid resistance		_	80	_	Ω	
Prefocusing coil						
Solenoid current		_	5	7	A	2, 3
Solenoid voltage		_	30	40	V	
Solenoid resistance		-	6	_	Ω	
GETTER-ION PUMP SUPPLY						
Operating voltage		3	3.3	4	kV	
Operating current		_	≈ 10 ⁻³	80	mA	
Internal resistance of power supply		25	300	_	$k\Omega$	

MECHANICAL DATA

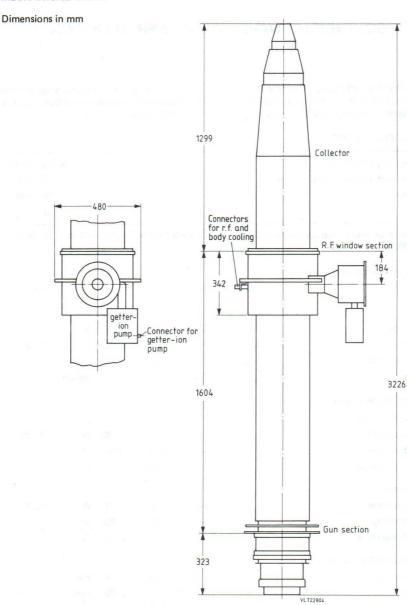


Fig. 1.

Tube mounted in the mounting frame with solenoid.

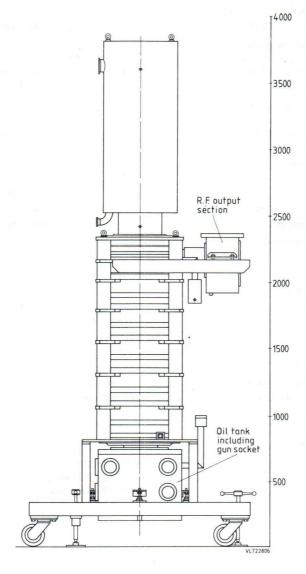


Fig. 2.

Drawing shows klystron and trolley without operational lead shielding.

COOLING		min.		typ.	max.		
Vapour cooling of collector demineralized or distilled water		50		100	_	l/min	note 4, 5
pressure drop at 100 l/min		_		_	20	kPa	(= 200 mbar)
Water cooling of body circuit I demineralized or distilled water with 10% stabilized glycol added		10		14	_	ℓ/min	note 5
pressure drop		_		300	_	kPa	(= 3 bar)
Water cooling of body circuit II demineralized or distilled water with 10% stabilized glycol added		15		20	_	ℓ/min	note 5
pressure drop		_		300	_	kPa	(= 3 bar)
Output window		0.6		1.2	_	m³/min	, 554.7
pressure drop		_		9	_	kPa	(= 90 mbar)
Inlet water temperature		-		_	+50	°C	
Inlet air temperature		_		_	+45	°C	
Cathode socket and accelerator anode under oil							
MASS							
Net mass YK1302		500	kg				
Mounting frame with solenoid		1400	kg				
Boiler		150	kg				
Capability of hoist	min.	600	kg				
DIMENSIONS							
Tube and mounting frame		see dr	awin	gs			
Required ground clearance for lifting hoist		min. 6	50 c	m			
MOUNTING		vertica	al, co	ollector u	0		
R.F. CONNECTORS							
Input		N-typ	e, fe	male			
Output				R5 (WR			

mating flange UDR5

ACCESSORIES

Klystron trolley with waveguide support	TE1312
Focusing coil unit	TE1322
Oil tank	TE1332
Coaxial/waveguide transition, WR1800	TE1342A
Lead shielding	TE1362
Trolley for transportation of a klystron in horizontal position without lifting gear	TE1372A
Supporting frame for storage and any movement of burnt-out or spare klystrons	
in any position other than vertical	TE1372B
Handling equipment	TE1382
Boiler	TE1392

LIMITING VALUES (Absolute maximum ration	ng system)				
Heater voltage	{	max. 1	0% above	e spec	ified values
Heater current	l		0.5		
Cathode voltage to body (ground)		max.	-85	kV	
Cold cathode voltage to body (ground)		max.	-90	kV	
Cathode current		max.	20	Α	1119
Accelerator anode voltage to cathode		max.		kV	note 6
Accelerator anode current		max.	5	mA	
Collector dissipation					note 7
output power > 200 kW		max.	750	kW	
output power < 200 kW		max.	500	kW	
Dissipation body circuit I		max.	15	kW	
Dissipation body circuit II		max.	10	kW	
C.W. output power		max.	850	kW	
Load VSWR		max.	1.2		note 8
Temperature rise, window cooling air flow		max.	30	K	
TYPICAL OPERATING CONDITIONS					
800 kW operation into matched load	min.	typ.	max.		
Cathode voltage to body (ground)	-76	-80	_	kV	
Cathode current	_	16.5	-	A	note 9
Input power, d.c.	-	1322	_	kW	
Accelerator anode voltage to cathode	_	52	_	kV	note 9
Accelerator anode current	_	1.5	_	mA	
C.W. output power, VSWR ≤1.1	-	800	_	kW	
Collector dissipation	-	522	-	kW	note 7
Efficiency	60	60.5	_	%	
C.W. drive power	_	60	80	W	
PERFORMANCE DATA					
Harmonic content with respect to fundamental 2nd order	max.	-25	dB		
3rd order	max.	-25	dB		
Spurious noise amplitude					
for f < 300 Hz	<	1	%		
for f = 300 to 1000 Hz	<	1	%		
for f > 1000 Hz	\leq	0.5	%		

Notes

- 1. When switching on the heater voltage, the heater current must never exceed a peak value of 65 A.
- 2. Required values are given with each tube.
- 3. Further adjustment according to operating instructions.
- Volume of water converted to steam: 27 cm³/min per kW collector dissipation in 43 ℓ/min steam per kW collector dissipation.
- 5. For further recommendations please contact the tube manufacturer.
- 6. The accelerator anode voltage may never become positive with respect to the body (ground).
- It must be observed that for operation with reduced r.f. drive the maximum value for collector dissipation is not exceeded.
- 8. For reflections exceeding this value please contact the tube manufacturer.
- The klystron should not be operated with a cathode current below 4 A except for switching purposes.

INSTALLATION AND OPERATION REQUIREMENTS

A. Required interlocks

- Fast switch-off of the drive power within 30 ms has to be done if the arc detector and/or r.f.
 reflection indicator is activated. An arc detector must be provided at the knee of the output wave
 quide.
- A fast switch-off of the beam supply has to be provided when one of the following situations occurs:
 - a) the beam current increases rapidly,
 - b) the solenoid current deviates by more than \pm 5% from the adjusted value.

The switching sensors and the discharge facilities for the power supply must be designed so that a copper wire of 0.35 mm diameter, connected to the power supply instead of the klystron (length approx. 1 cm/kV), will not be destroyed, if the full operating voltage is switched on and applied to the wire.

- The mains for the beam power supply has to be switched off within 100 ms when one of the following situations occur:
 - a) the collector temperature monitor (with internal thermocouple) is activated (T = max. 150 °C),
 - b) the monitored temperature differences between inlet and outlet in the collector and/or body cooling circuits are too high:

max. values permitted: body circuit I $\Delta \theta = 15 \text{ K}$ body circuit II $\Delta \theta = 15 \text{ K}$

- c) the beam current either exceeds the limiting value or increases by more than 30% or max. 2 A
 above the adjusted value,
- d) the water flow of the body cooling circuits decreases below the required minimum value,
- e) the air flow for the r.f. window cooling decreases below the required minimum value,
- f) the thermocouple temperature at the inner conductor of the output window exceeds 90 °C,
- g) the pump current exceeds $10 \mu A$.

Restarting is not allowed within 10 s of any interruption.

B. Switching-on and off sequence

Switching-on sequence

- 1. Getter-ion pump supply on.
- 2. Check that the pump current is $< 10 \mu A$.
- 3. Heater voltage supply on.
- 4. Wait for preheating time (min. 15 minutes).
- 5. Cooling air r.f. window on.
- Cooling body circuits I and II on.
- 7. Collector cooling supply on.
- 8. Solenoid current supply on.
- 9. Check that the heater current has reached the adjusted value ±0.5 A.
- 10. R.F. drive on.
- 11. Beam supply on.

Switching-off sequence

- 1. Beam voltage supply off.
- All other supplies and cooling circuits off.

C. Radiation dangers

R.F. radiation

R.F. power may be emitted not only through the normal output coupling but also through other apertures (for example, r.f. leaks). This r.f. power may be sufficiently intense to cause danger to the human body, particularly to the eyes. Such radiation may be increased if the tube is functioning incorrectly.

X-radiation

A highly dangerous intensity of X-rays may be emitted by tubes operating at voltages higher than approximately 5 kV. Adequate protection (X-ray shielding) for the operator is then necessary. The emission intensity of X-rays may correspond to a value of voltage much higher than that expected from the actual value applied to the tube.

Poor focusing may result in excessive X-radiation.

This tube and accessories are equipped with a lead shielding which under normal conditions reduces the radiation values below 1 mR/h, measured at a distance of 1 m from the tube assembly.

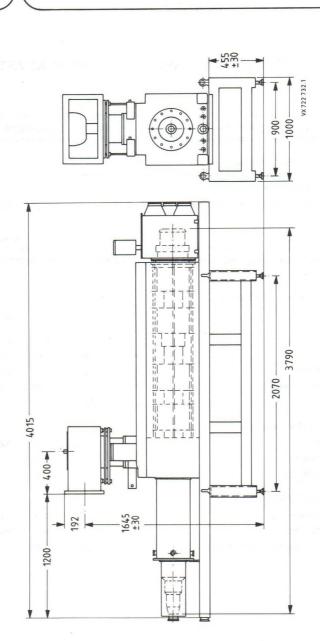
CONTINUOUS-WAVE HIGH-POWER KLYSTRON

Water cooled, high efficiency, fixed frequency, continuous-wave high-power klystron in metal-ceramic construction, for use in scientific and industrial applications. The tube has internal cavities, solenoid focusing, beam control by modulation anode and a high stability dispenser-type cathode.

QUICK REFERENCE DATA

Centre frequency (fixed tuned)	352.21	MHz	
Bandwidth for 1dB drop in output power	± 0.5	MHz	
Output power	1	MW	
Cooling	water		

This data must be in conjunction with GENERAL OPERATIONAL RECOMMENDATIONS for KLYSTRONS.


HEATING: indirect by a.c. or d.c.

Cathode				dispens	er type	
		min.	typ.	max.		
Heater voltage	V_{f}	22	25	27	V	
Heater current	If	20	23	25	A	
Cold heater resistance	R _{fo}	-	100	_	$m\Omega$	
Waiting time	tw	15	-	_	minutes	6
FOCUSING: electromagnetic						
Solenoid current		8	10	12	Α	
Solenoid voltage		_	200	250	V	
Solenoid resistance		_	20	_	Ω	
GETTER-ION PUMP SUPPLY *						
Operating voltage		3	3.3	4	kV	
Operating current		-	10-3	80	mA	
Internal resistance of power supply		25	300	_	kΩ	

^{*} The tube is equipped with two ion getter pumps which can be operated individually or in a parallel arrangement at one power supply.

MECHANICAL DATA

Tube mounted in the mounting frame with solenoid. Dimensions in mm

.10.

COOLING	min.	typ.	max.		
Cooling of collector and any body is achieved by filterd soft water.		,,			
Pressure in any cooling water circuit	-	_	700	kPa	(=7 bar)
Pressure drop	_	-	300	kPa	(=3 bar)
Collector cooling water flow rate inlet water temperature outlet water temperature	800 _ _	1000 +20 +30	1200 +75 +90	l/min °C °C	
Body circuit I					
cooling water flow rate inlet water temperature outlet water temperature	15 - -	20 +20 +40	25 +40 +60	l/min °C °C	
Body circuit II					
cooling water flow rate inlet water temperature outlet water temperature	15 - -	20 +20 +40	25 +40 +60	l/min oC oC	
Output window					
air	_	1	_	m ³ /mir	1
pressure drop	_	15	_	kPa	(=150 mbar)
MASS					
Mass of complete assembly without demountable X-ray shield	max. 3	000 kg			
DIMENSIONS of complete assembly					
Length	approx	. 4 kg			
Height	approx	. 1.9 m			
Width	approx	. 1 m			
MOUNTING	horizo	ntal			
COOLING WATER CONNECTORS					
Body circuits I and II	Walthe	r series 0 -	Type 4	(NW12)	
Collector	Sandvi	k FCL-316	6L-76, 1	S-V	
R.F. CONNECTORS					
Input	female	connector	, 50 Ω,	type N	
Output	WR230	00 wavegu	ide		

ACCESSORIES

Transportation and operation frame	TE1351A
Focusing coil unit I	TE1351B
Focusing coil unit II	TE1351C
Coaxial/waveguide transition, WR2300 (R3)	TE1352
Waveguide support	TE1353
Collector cooling jacket I	TE1354A
Collector cooling jacket II	TE1354B
Cooling water collector	TE1355A
Interconnecting hoses	2 x TE1355B
H.V. oil tank	TE1356
Mounting rack	TE1359

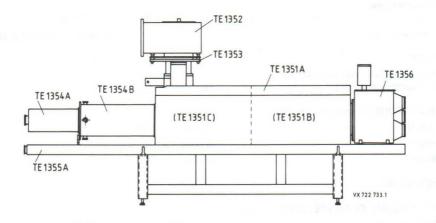


Fig. 2.

LIMITING VALUES (Absolute maximum rating system)			
Heater voltage	l may 1	1% ahove	e specified values
Heater current	, max. I	370 db0 v	s specified values
Cathode voltage to body (ground)	max.	-95	kV
Cathode current	max.	25	Α
Modulation anode current	max.	10	mA
R.F. drive power	max.	150	W
C.W. output power	max.	1.1	MW
Load VSWR	max.	1.3	
Body dissipation	max.	20	kW
Collector dissipation	max.	900	kW *
TYPICAL OPERATING CONDITIONS			
1 MW operation into matched load		typ.	
Input power, d.c.		1470	kW
R.F. drive power		90	W
Collector dissipation		460	kW
Body dissipation		10	kW
C.W. output power		1000	kW
Efficiency		68	%
Beam voltage		90	kV
Beam current		16.3	A
PERFORMANCE DATA			
Phase shift to cathode current		< 15	0/A
Phase shift to rel. cathode voltage		< 15	0/%
Phase shift to r.f. drive		< 10	^O /dB
R.F. output to rel. cathode voltage		< 0.2	dB/%
Signal-to-noise ratio at saturation		60	dB
Harmonic levels to fundamental at saturation		30	dB
Ratio of fundamental to other discrete frequencies			
total to a state of the state o		70	-ID

within bandwidth at saturation

70 dB

^{* 1600} kW for 1 s. can be tolerated with reduced drive.

INSTALLATION AND OPERATION REQUIREMENTS

A. Required interlocks

- Fast switch-off of the drive power within 10 ms has to be done if the arc detector and/or r.f.
 reflection indicator is activated. An arc detector must be provided at the knee of the output wavequide.
- 2. A fast switch-off of the beam supply has to be provided when one of the following situations occurs:
 - a) the beam current increases rapidly,
 - b) the solenoid current deviates by more than ±5% from the adjusted value.

The switching sensors and the discharge facilities for the power supply must be designed so that a copper wire of 0.35 mm diameter, connected to the power supply instead of the klystron (length approx. 1 cm/kV), will not be destroyed, if the full operating voltage is switched on and applied to the wire.

- 3. The mains for the beam power supply has to be switched off within 100 ms when one of the following situations occur:
 - a) the beam current either exceeds the limiting value or increases by more than 30% or max. 2 A above the adjusted value,
 - b) the pump current exceeds 10 μ A.
 - the monitored temperature differences between inlet and outlet in the collector and/or body cooling circuits are too high,
 - d) the collector temperature monitor (with internal thermocouple) is activated (switch-off value adjustable between 30 and 60 K above the water inlet temperature),
 - the water flow of the collector and body cooling circuits decreases below the required minimum value.
 - f) the air flow for the r.f. window and cathode cooling decreases below the required minimum value.
- 4. Switch-off the heater voltage for pump current > 4 mA.

Restarting is not allowed within 10 s after any interruption.

B. Switching-on and off sequence

Switching-on sequence

- Getter-ion pump supply on.
- 2. Check that the pump current is $< 10 \mu A$.
- Heater voltage supply on.
- Wait for preheating time (min. 15 minutes).
- 5. Cooling air r.f. window on.
- Cooling body circuits I and II on.
- 7. Collector cooling supply on.
- 8. Solenoid current supply on.
- 9. Check that the heater current has reached the adjusted value ± 0.5 A.
- 10. R. F. drive on.
- Beam voltage supply on.

Switching-off sequence

- 1. Beam voltage supply off.
- 2. All other supplies and cooling circuits off.

C. Radiation dangers

R.F. radiation

R.F. power may be emitted not only through the normal output coupling but also through other apertures (for example, r.f. leaks). This r.f. power may be sufficiently intense to cause danger to the human body, particularly to the eyes. Such radiation may be increased if the tube is functioning incorrectly.

The r.f. radiation 1 m from any part of the klystron at 1 MW output power is max. 0.1 mW/cm².

X-radiation

Due to the high accelerating voltage, the klystron generates a high level of X-rays which is reduced by the supplied shielding plates of the focus mount and the H.V. oil container. Nevertheless the complete assembly has to be shielded additionally during operation in order to reduce the radiation to a non-dangerous level. The tube manufacturer recommends a "lead garage", as shown in the drawing Fig. 3. Though the overall dimensions are not critical, it is essential, that any possible radiation path is blocked by at least 2 mm of lead sheets.

LEAD GARAGE

Dimensions in mm

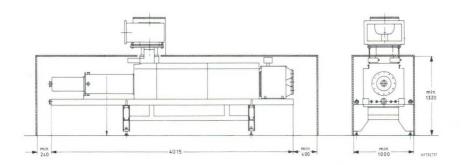


Fig. 3.

The "lead garage" will not be supplied by the tube manufacturer.

and the state of t

the series of th

shugkness i

100

8,

PULSED POWER KLYSTRONS

Fixed frequency 20 MW pulsed power amplifier klystrons in metal-ceramic construction with 5 internal cavities, electromagnetic focusing, continuously operating getter-ion pump.

Coaxial input connector and S-band output waveguide fitted with a ceramic window.

Water cooling system for r.f. waveguide and window, collector and body.

Intended for use in long-range radar transmitters.

QUICK REFERENCE DATA

YK1510 YK1511 YK1512	S-band, the klystrons are factory tuned to the specified frequency range
R.F. output power*	
peak	> 20 MW
average	> 20 KW
Duration of r.f. pulse (-3 dB down)	4 μs
Gain	44 dB

This data must be read in conjunction with GENERAL OPERATIONAL RECOMMENDATIONS for KLYSTRONS.

HEATING, indirect by a.c. or d.c.

Heater voltage**	V _F	15 to 30 V
Heater current	!F	20 to 30 A
Heater supply current at switch-on;		

the surge current must never exceed a peak value of 50 A.

Resistance of heater

cold	R _{fo}	>	0.125	Ω
hot	r _f		0.9 to 1.1	
Waiting time	t _w	min.	12	min

^{*} At least one point in the band.

^{**} The exact value is marked on each tube test report. During operation the heater voltage may not fluctuate more than ±5 %.

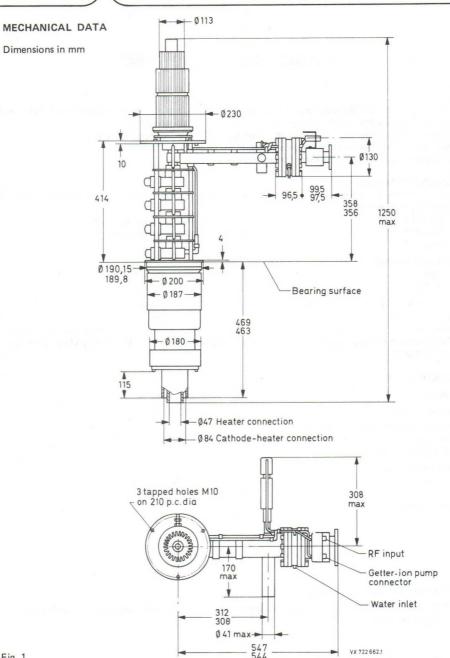


Fig. 1.

MASS (net)	approx.	70	kg	JAJ TOTAL
MOUNTING				
Mounting position: vertical with collector up				
GETTER-ION PUMP POWER SUPPLY				
		45. 55		
Pump voltage		4.5 to 5.5	kV	
Supply current				
tube operating	max.	50	μA	
tube turned off	max.	200	mA	
ELECTROMAGNET				
Current I ₁ , I ₂ , I ₃	max.	175	Α	
Impedance of each coil (20 °C)		0.08	Ω	
COOLING				
Collector, body and window*	min.	max.		
Cooling-water inlet temperature	-	60	oC	
Cooling-water flow	10	_	ℓ/min	
Cooling-water inlet pressure	-	1000	kPa	(= 10 bar)
Cooling-circuit pressure drop	_	600	kPa	(= 6 bar)
Electromagnet	min.	max.		
Water flow	13	-	ℓ/min	
Water inlet pressure	_	1000	kPa	(= 10 bar)
Water inlet temperature	_	60	oC	

^{*} By means of a single water circuit.

LIMITING VALUES (Absolute maximum rating system)

Beam voltage, peak	max.	270	kV	
Beam current, peak	max.	275	Α	
R.F. input power peak average	max. max.	5 10	kW W	
R.F. output power peak average	max. max.	23 23	MW kW	
Load VSWR	max.	1.4		
Collector dissipation	max.	80	kW	
Voltage pulse duration (measured at 70 %)	max.	6	μs	
Duty factor	max.	0.003		
Pressure on the output window	max. min.	1300 1100	kPa kPa	(= 13 bar) (= 11 bar)

PRODUCT SAFETY

1. X-radiation

Correct operation of the tube can be guaranteed only if a set of accessories, approved by the tube manufacturer, is used.

The operating tube generates X-rays which can penetrate the ceramic parts of the tube envelope. In order to reduce the radiation at any accessible points to an officially acceptable, non-dangerous level the tube must be shielded and any possible radiation path blocked by at least 1 mm of brass or an equivalent depth of non-magnetic X-ray absorbing material. The proper use of our acessories will provide the necessary shielding.

2. R.F. radiation

R.F. power may be emitted through apertures other than the normal output coupling (for example r.f. leaks). This r.f. power may be sufficiently intense to cause danger to the human body, particularly to the eyes. Such radiation may be increased if the tube is functioning incorrectly.

TYPICAL OPERATING CONDITIONS

Measured under matched load condition	ons (VSWF	3 ≤ 1.1)			
Operating frequency*				S-Band	
Bandwidth (-1 dB)				100	MHz
Beam voltage				240	kV
Beam current				254	A
R.F. input power, peak				1	kW
Operating mode	Α	В	C		
Output power					
peak	20	10	10		MW
average	20	20	10		kW
R.F. pulse duration (-3 dB)	4	4	4		μs
Pulse repetition rate	250	500	250		Hz
Duty factor	0.001	0.002	0.001		
Gain				44	dB
Efficiency				> 30	%
Perveance				2.0 to 2.3	$\mu A \cdot V^{-3/2}$

^{*} The tube is tuned to a fixed frequency at the factory.

DEVELOPMENT DATA

This data sheet contains advance information and specifications are subject to change without notice.

PULSED POWER KLYSTRON

Fixed frequency, pulsed power klystron in metal-ceramic construction for S-band with 5 internal cavities, electromagnetic focusing, continuously operating getter-ion pump.

Coaxial input connector and r.f. output split into two parallel waveguide arms with two r.f. ceramic windows.

Water cooling systems for r.f. windows, collector and body.

Intended for use for linear particle accelerator applications.

QUICK REFERENCE DATA

Frequency (fixed tuned)	f		2998.5	MHz	
R.F. pulse width (at $-3 dB$)			4.5	μs	
R.F. output power peak	W _{op}	\geq	35	MW	
average	Wo	\geq	15.75	kW	
Gain	G	\geq	52	dB	
Efficiency	η	\geq	45	%	

This data must be read in conjunction with GENERAL OPERATIONAL RECOMMENDATIONS for KLYSTRONS.

HEATING: indirect by a.c.

Cathode	long lif	e oxide typ	oe		
		min.	typ.	max.	
Heater voltage *	V_{f}	17	20	25	V
Heater current	If	18	21	24	A
Cold heater resistance (20 °C)	R _{fo}	_	125	_	$m\Omega$
Waiting time	t_{W}	15	-	_	minutes
GETTER-ION PUMP SUPPLY					
Pump voltage		-	_	5	kV

^{*} The actual value is marked on each tube test report.

MECHANICAL DATA Dimensions in mm Collector water cooling outlet M22 ×1,5 (Øi. 12) - 256 RF-output Collector water cooling inlet M22×1,5 (Øi. 12) 1177 1167 Getter-ion-pump 1685 549 max 477 setting area Anode pole piece 420 510 Cathode/ heater contact Heater contact Ø 200 Øi. 47,5 RF-output -Øi.83,5 Body water cooling outlet Body water cooling inlet M22×1,5 (Øi.12) $M22 \times 1,5 (\phi i. 12)$ VX 722 752.2

Fig. 1.

COOLING	min.	typ.	max.		
Collector demineralized or distilled water					
with 10% stabilized glycol added	_	60	_	ℓ/min	
pressure drop	_	70	_	kPa	(= 0.7 bar)
Body circuit demineralized or distilled water with 10% stabilized glycol added	_	10	_	l/min	
pressure drop	_	170	_	kPa	(= 1.7 bar)
Focusing coils demineralized or distilled water with 10 % stabilized glycol added	_	100	_	kPa	(= 1 bar)
MASS					
Net mass YK1600, incl. combiner	120	kg			
Magnet trolley	450	kg			
X-ray shield collector	170	kg			
X-ray shield body	300	kg			
DIMENSIONS					
Tube and mounting frame	see dr	rawing			
MOUNTING	vertic	al, cathode	down		
R.F. CONNECTORS					
Input	N-typ	e, female			
Output	waveg	guide, LIL-F	lange V.	W. 31 1	240-2
CONNECTOR GETTER-ION PUMP	HN-t	ype, female			
ACCESSORIES					
R.F. power combiner	TE16	10			
Focusing magnet	TE16	12			
Counter coil	TE16	13			
X-ray shield for body	TE16	20			
X-ray shield for collector	TE16	21			
Transport trolley klystron	TE16	30			
Lifting yoke for klystron	TE16				
Lifting device for collector shield	TE16	estrono.			
Lifting device for magnet	TE16				
Magnet trolley	TE16	34			

0

LIMITING VALUES (Absolute maximum rating system)

		0.5		
Heater voltage	max.	25	V	
Heater current	max.	24	Α	
Cathode voltage, peak	max.	300	kV	
Cathode current, peak	max.	300	A	
Collector dissipation	max.	80	kW	
R.F. drive power				
peak	max.	1000	W	
average	max.	10	W	
R.F. pulse width	max.	6	μs	
H.V. pulse width	max.	7	μs	
Load VSWR				
for normal operation	max.	1.15		
permissable value *	max.	1.5		
Pressure on r.f. output windows SF ₆	max.	550	kPa (5.5 bar)	

^{*} Without destruction of the tube.

TYPICAL OPERATING CONDITIONS

TITICAL OF ENATING CONDITIONS		
Frequency	2998.5	MHz
Heater current	21	A
Heater power	420	W
Preheating time cathode	15	minutes
Supply voltage of getter-ion pump	5	kV
Load VSWR	≤ 1.04	
Cathode voltage, peak	270	kV
Cathode current peak	280	A
Bandwidth (-1dB)	≥ 10	MHz
Perveance	2	$\mu A/V^{3/2}$
R.F. drive power, peak	175	W
R.F. pulse width at -3 dB	4.5	μs
Pulse repetition rate	100	Hz
Pressure on r.f. output windows SF ₆	550	kPa (5.5 bar)
R.F. output power		
peak	35	MW
average	15.75	kW
Gain	53	dB
Efficiency	≥ 45	%
Dissipation on klystron body	≤ 2	kW

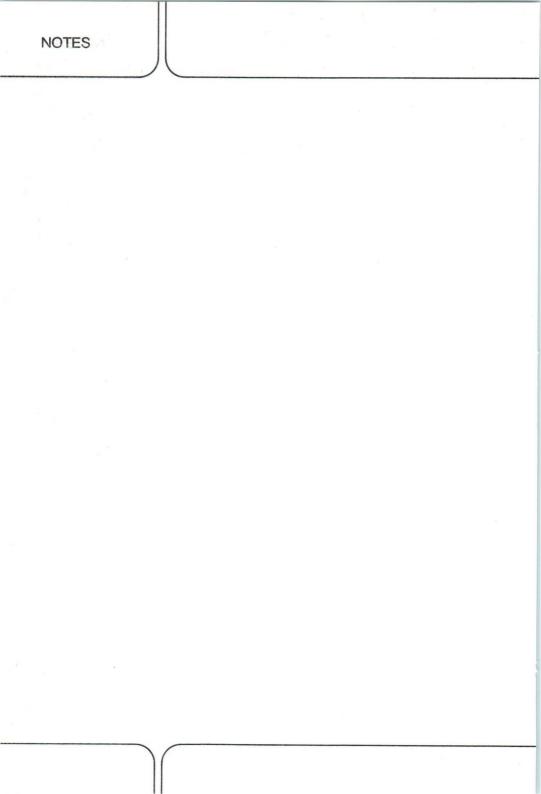
PRODUCT SAFETY

R.F. radiation

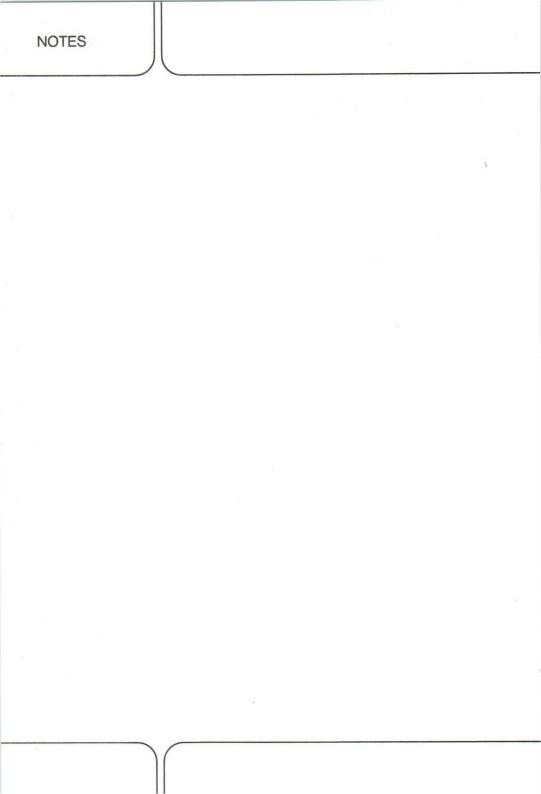
R.F. power may be emitted not only through the normal output coupling but also through other apertures (for example, r.f. leaks). This r.f. power may be sufficiently intense to cause danger to the human body, particularly to the eyes. Such radiation may be increased if the tube is functioning incorrectly.

X-radiation

A highly dangerous intensity of X-rays may be emitted by tubes operating at voltages higher than approximately 5 kV. Adequate protection (X-ray shielding) for the operator is then necessary. The emission intensity of X-rays may correspond to a value of voltage much higher than that expected from the actual value applied to the tube.


Poor focusing may result in excessive X-radiation.

This tube and accessories are equipped with a lead shielding which under normal conditions reduces the radiation values below 2.5 mR/h, measured at a distance of 0.4 m from the tube assembly.


INDEX OF TYPE NUMBERS

type	page
YK1001	21
YK1002	21
YK1110	35
YK1151	41
YK1190	63
YK1191	63
YK1192	63
YK1198	75
YK1210	83
YK1220	89
YK1223	89
YK1230	99
YK1233	99
YK1240	109

type	page
YK1250	117
YK1263	127
YK1265	127
YK1295	141
YK1296	141
YK1297	141
YK1300	151
YK1301	151
YK1305	151
YK1302	163
YK1350	173
YK1510	181
YK1511	181
YK1512	181
YK1600	187

NOTES

Electronic components and materials for professional, industrial and consumer uses from the world-wide Philips Group of Companies

Argentina: PHILIPS ARGENTINA S.A., Div. Elcoma, Vedia 3892, 1430 BUENOS AIRES, Tel. 541-7141/7242/7343/7444/7545.

Australia: PHILIPS INDUSTRIES HOLDINGS LTD., Elcoma Division, 11 Waltham Street, ARTARMON, N.S.W. 2064, Tel. (02)439 3322.

Austria: ÖSTERREICHISCHE PHILIPS BAUELEMENTE INDUSTRIE G.M.B.H., Triester Str. 64, A-1101 WIEN, Tel. 629 111.

Belgium: N.V. PHILIPS & MBLE ASSOCIATED, 9 rue du Pavillon, B-1030 BRUXELLES, Tel. (02) 242 74 00.

Brazil: IBRAPE, Caixa Postal 7383, Av. Brigadeiro Faria Lima, 1735 SAO PAULO, SP, Tel. (011) 211-2600.

Canada: PHILIPS ELECTRONICS LTD., Elcoma Division, 601 Milner Ave., SCARBOROUGH, Ontario, M1B 1M8, Tel. 292-5161. Chile: PHILIPS CHILENA S.A., Av. Santa Maria 0760, SANTIAGO, Tel. 39-4001. Colombia: IND. PHILIPS DE COLOMBIA S.A., c/o IPRELENSO LTD., Cra. 21, No. 56-17, BOGOTA, D.E., Tel. 2497624. Denmark: MINIWATT A/S, Strandlodsvej 2, P.O. Box 1919, DK 2300 COPENHAGEN S, Tel. (01) 54 11 33 Finland: OY PHILIPS AB, Elcoma Division, Kaivokatu 8, SF-00100 HELSINKI 10, Tel. 17271.

France: R.T.C. LA RADIOTECHNIQUE-COMPELEC, 130 Avenue Ledru Rollin, F-75540 PARIS 11, Tel. 4338 8000. Germany (Fed. Republic): VALVO, UB Bauelemente der Philips G.m.b.H., Valvo Haus, Burchardstrasse 19, D-2 HAMBURG 1, Tel. (040) 3296-0. Greece: PHILIPS HELLENIQUE S.A., Elcoma Division, 54, Syngru Av., ATHENS 11742, Tel. 9215311/319. Hong Kong: PHILIPS HONG KONG LTD., Elcoma Div., 15/F Philips Ind. Bldg., 24-28 Kung Yip St., KWAI CHUNG, Tel. (0)-245121. India: PEICO ELECTRONICS & ELECTRICALS LTD., Elcoma Dept., Band Box Building, 254-D Dr. Annie Besant Rd., BOMBAY - 400 025, Tel. 4930311/4930590. Indonesia: P.T. PHILIPS-RALIN ELECTRONICS, Elcoma Div., Setiabudi II Building, 6th Fl., Jalan H.R. Rasuna Said (P.O. Box 223/KBY), Kuningan, JAKARTA - Selatan, Tel. 512572 Ireland: PHILIPS ELECTRICAL (IRELAND) LTD., Newstead, Clonskeagh, DUBLIN 14, Tel. 693355. Italy: PHILIPS S.p.A., Sezione Elcoma, Piazza IV Novembre 3, I-20124 MILANO, Tel. 2-6752.1. Japan: NIHON PHILIPS CORP., Shuwa Shinagawa Bidg., 26-33 Takanawa 3-chome, Minato-ku, TOKYO (108), Tel. 448-5611. (IC Products) SIGNETICS JAPAN LTD., 8-7 Sanbancho Chiyoda-ku, TOKYO 102, Tel. (03) 230-1521 Korea (Republic of): PHILIPS ELECTRONICS (KOREA) LTD., Élcoma Div., Philips House, 260-199 Itaewon-dong, Yongsan-ku, C.P.O. Box 3680, SEOUL, Tel. 794-5011 Malaysia: PHILIPS MALAYSIA SDN. BERHAD, No. 4 Persiaran Barat, Petaling Jaya, P.O.B. 2163, KUALA LUMPUR, Selangor, Tel. 77 4411.

Mexico: ELECTRONICA, S.A de C.V., Carr. México-Toluca km. 62.5, TOLUCA, Edo. de México 50140, Tel. Toluca 91 (721) 613-00. Netherlands: PHILIPS NEDERLAND, Marktgroep Elonco, Postbus 90050, 5600 PB EINDHOVEN, Tel. (040) 79 33 33 New Zealand: PHILIPS NEW ZEALAND LTD., Elcoma Division, 110 Mt. Eden Road, C.P.O. Box 1041, AUCKLAND, Tel. 605-914. Norway: NORSK A/S PHILIPS, Electronica Dept., Sandstuveien 70, OSLO 6, Tel. 68 02 00. Peru: CADESA, Av. Jiron Nazca 704, Apartado No. 5612, LIMA II, Peru, Tel. 319253.

Philippines: PHILIPS INDUSTRIAL DEV. INC., 2246 Pasong Tamo, P.O. Box 911, Makati Comm. Centre, MAKATI-RIZAL 3116, Tel. 86-89-51 to 59. Portugal: PHILIPS PORTUGUE S.A.R.L., Av. Eng. Duarte Pacheco 6, 1009 LISBOA Codex, Tel. 683121 Singapore: PHILIPS PROJECT DEV. (Singapore) PTE LTD., Elcoma Div., Lorong 1, Toa Payoh, SINGAPORE 1231, Tel. 3502 000. South Africa: EDAC (PTY.) LTD., 3rd Floor Rainer House, Upper Railway Rd. & Öve St., New Doornfontein, JOHANNESBURG 2001, Tel. 614-2362/9. Spain: MINIWATT S.A., Balmes 22, BARCELONA 7, Tel. 3016312. Sweden: PHILIPS KOMPONENTER A.B., Lidingövägen 50, S-11584 STOCKHOLM 27, Tel. 08/7821000. Switzerland: PHILIPS A.G., Elcoma Dept., Allmendstrasse 140-142, CH-8027 ZÜRICH, Tel. 01-4882211 Taiwan: PHILIPS TAIWAN LTD., 150 Tun Hua North Road, P.O. Box 22978 TAIPEI, Taiwan, Tel. 7120500 Thailand: PHILIPS ELECTRICAL CO. OF THAILAND LTD., 283 Silom Road, P.O. Box 961, BANGKOK, Tel. 233-6330-9. Thailand: PHILIPS ELEC'HIGLA CO. OF HAILAND LTD., 283 SIIOM HOAD, P.O. BOX 961, BANGROK, 1el. 233-6330-9.
Turkey: TÜRK PHILIPS TICARET A.S., Elcoma Department, Inoin Cad, No. 78-80, P.K.504, 8,0074 ISTANBUL, Tel. 4359 10.
United Kingdom: MULLARD LTD., Mullard House, Torrington Place, LONDON WCTE 7HD, Tel. 01-5806633.
United States: AMPEREX ELECTRONIC CORP., 230 Duffy Ayenue, P.O. Box 560, HICKSVILE, L.I./NY, 11802, Tel. (516)931-6200.
(Passive Devices) MEPCO/ELECTRA INC., Columbia Rd., MORRISTOWN, N.J. 07960, Tel. (201) 539-2000.
(Passive Devices & Electromechanical Devices) CENTRALAB INC., 5855 N. Glen Park Rd., MILWAUKEE, WI 53201, Tel. (414)228-7380.
(IC Products) SIGNETICS CORPORATION, 811 East Arques Avenue, SUNNYVALE. California 94086, Tel. (408) 911-2000. Uruguay: LUZILECTRON S.A., Avda Uruguay 1287, P.O. Box 907, MONTEVIDEO, Tel. 914321 Venezuela: IND. VENEZOLANAS PHILIPS S.A., c/o MAGNETICA S.A., Calle 6, Ed. Las Tres Jotas, App. Post. 78117, CARACAS, Tel. (02) 239 39 31.

For all other countries apply to: Philips Electronic Components and Materials Division, International Business Relations, Building BAE, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Tel. +3140723304, Telex 35000 phtc nl

D51

© Philips Export B.V. 1986

This information is furnished for guidance, and with no guarantees as to its accuracy or completeness; its publication conveys no licence under any patent or other right, nor does the publisher assume liability for any consequence of its use; specifications and availability of goods mentioned in it are subject to change without notice; it is not to be reproduced in any way, in whole or in part, without the written consent of the publisher.