MUVISTOIS INDUSTRIAL and MILITARY # TABLE OF CONTENTS | | PAGE | | PAGE | |---|------|---|---------| | BASIC NUVISTOR CONCEPT | 3 | NUVISTOR UHF-AMPLIFIER TRIODE 8058 | 12 | | Uniformity of Characteristics | 3 | Characteristics and Maximum Ratings | 12 | | Reliability | 4 | Typical Operation | 12 | | ENVIRONMENTAL PERFORMANCE | 4 | NUVISTORS FOR CLASS C SERVICE 8627, A15526 | 12 - 16 | | Temperature Effects | 4 | Characteristics and Maximum Ratings | | | Shock | 6 | Typical Operation | | | Sweep-Frequency Vibration and Fatigue Vibration | 6 | WARM-UP TIME | | | Variable-Frequency Vibration | 6 | NOISE | 17 | | Random Vibration | 7 | Low-Frequency Noise | | | Resonance-Cycling Vibration | 7 | RF Noise | | | Centrifuge (Linear Acceleration) | 7 | Description of Measuring Circuit | | | Altitude | 7 | INPUT CHARACTERISTICS | | | Nuclear Radiation (Steady-State and Pulse) | 7 | Grid Current | | | NUVISTOR TRIODES 7586, 7895, 8056, 8393, 8628 | 8 | Input Conductance and Susceptance Transit-Time Estimates | 20 | | Characteristics and Maximum Ratings | 8,9 | | | | RF-Amplifier Service | 9 | CROSS MODULATION | 21 | | IF-Amplifier Service | 11 | OPERATING PRECAUTIONS | 21 | | Audio-Preamplifier Service | 11 | ADDITIONAL TECHNICAL INFORMATION | 22 | | NUVISTOR TETRODE 7587 | 11 | NUVISTOR-TUBE SOCKET AND | | | Characteristics and Maximum Ratings | 11 | CONNECTOR INFORMATION | 23 | | IF-Amplifier Design | | DIMENSIONAL OUTLINES, TERMINAL DIAGRAMS, AND MODIFIED BOTT OM VIEWS | 24,25 | | Gain-Bandwidth Product | • • | | • | | Mixer Operation | 12 | RCA FIELD SALES OFFICES | 27 | # RCA # INDUSTRIAL AND MILITARY NUVISTORS #### BASIC NUVISTOR CONCEPT Since RCA nuvistor tubes were first announced in 1959, they have been used in a wide variety of consumer, industrial, and military equipment. Millions of nuvistors are presently in use in such diverse applications as television-receiver rf amplifiers and in "hybrid" circuits in spacecraft such as Nimbus, Tiros, and Ranger. This booklet describes some of the significant design features and performance characteristics of the industrial and military nuvistor types. # Uniformity of Characteristics **Nuvistor** Triode The nuvistor design utilizes a light-weight, cantilever-supported, cylindrical electrode structure housed in an all-ceramic-and-metal envelope. Cutaway views of the three basic nuvistor designs are shown in Figure 1. Dimensional outlines and terminal diagrams are shown on pages 24 and 25. Cylindrical symmetry provides a stable and efficient design, both electrically and thermally. This symmetry, together with the cantilever construction, permits the use of close-tolerance jigs for extremely precise tube assembly. The jig assembly of parts contributes to the consistent, dependable performance of nuvistor tubes. The high values and tight limits for transconductance for industrial nuvistors are shown in Table I. The LAL and UAL values apply to the JAN specifications; the Min. and Max. values apply to both commercial and JAN specifications. Typical Double-Ended **Nuvistor Triode** Fig. 1 - Cutaway views showing cylindrical electrodes and tripod-like supports. Typical Double-Ended Nuvistor Tetrode | Type | Min. | LAL | Bogey | UAL | Max. | JAN Spec.
MIL-E-1/ | |------|-------|-------|-------|-------|-------|-----------------------| | 7586 | 10000 | * | 11500 | * | 13000 | 1397C · | | 7587 | 9000 | 10000 | 10600 | 11200 | 12200 | 1434C | | 7895 | 7900 | 8800 | 9400 | 10000 | 10900 | 1433C | | 8056 | 6500 | 7000 | 7500 | 8000 | 8500 | 1490B | | 8058 | 10000 | 11600 | 12400 | 13200 | 14800 | 1491B | ^{*} Plate current is controlled for LAL and UAL. Table I - Initial limits for transconductance (in μ mho) for industrial and military nuvistors. # Reliability RCA nuvistors are especially suited for use in applications in which long-term reliability is a critical design consideration. The combination of strong structural assembly and high-temperature processing produces tubes capable of giving thousands of hours of trouble-free life. The excellent vacuum obtained in the nuvistor is a result of a 10-minute processing cycle during which the tube is fired in a vacuum at a temperature of 850° C to outgas all the parts of the nuvistor thoroughly. Final seal-off is made at a temperature of approximately 950° C. The nuvistors utilize RCA Dark Heaters which operate efficiently at low temperatures, thus minimizing heater problems initially and throughout life. To determine failure rates, life test data have been compiled on the three basic nuvistor structures shown in Figure 1. Production life tests on the 7586, 7587, and 8058 are 1000-hour tests; one test per month is continued to 5000 hours. The tubes are operated at maximum rated values. From the production life-test data, including 5000-hour life tests, the observed failure rates for the three types are as shown in Table II. | Туре | P _b (W) | Failure Rate
(%/1000 hours) | Total Tube-Hours | |------|--------------------|--------------------------------|------------------| | 7586 | 1 | 0.71 | 2,384,000 | | 7587 | 2.2 | 0.81 | 617,000 | | 8058 | 1.5 | 0.31 | 330,000 | Table II - Failure rates, from production life test data. A typical field failure rate was determined from reliability life test data for the 7586 triodes. In this life test, a sample of 146 tubes was operated at a plate dissipation of 0.75 watt and a metal-shell (envelope) temperature of $150^{\rm o}$ C for a total of 2,001,000 tubehours. All tubes were operated for a minimum of 2000 | Туре | P _b (W) | Failure Rate
(%/1000 hours) | Total Tube-Hours | |------|--------------------|--------------------------------|------------------| | 7586 | 0.75 | 0.099 | 2,001,000 | Table III - Failure rate, from reliability life test data, type 7586. hours; a fifty-tube sample was continued to 30,000 hours. The observed failure rate for this life test was 0.099% per 1000 hours, as shown in Table III. Comparable failure rates should be expected for the other nuvistor types when they are operated at typical conditions, approximately three-fourths of maximum rated values. Figure 2 shows transconductance data for the 7586 nuvistor from the reliability life test described above. Comparison of the initial and 2000-hour data shows the uniformity of transconductance of the 7586 over an extended period of operation. Fig. 2 - Transconductance at 0 and 2000 hours, type 7586. #### **ENVIRONMENTAL PERFORMANCE** # Temperature Effects The unique construction of the nuvistor provides efficient conduction paths for heat transfer from tube elements to socket and chassis. Nuvistors thus offer the advantage of heat transfer by conduction, as a result of the following features: - (1) improved packaging density, - (2) minimum spacing requirements between nuvistors and other components (surrounding air has little effect on nuvistor shell temperature when the socket provides adequate contact between the shell and the chassis), - (3) elimination of additional components for radiation or convection cooling. Maximum grid-circuit-resistance ratings of RCA industrial nuvistor tubes apply for metal-shell temperatures of 150° C. The metal-shell (or envelope) temperature of a nuvistor is determined by a thermocouple-type measurement made in the area shown as Zone "A" in the dimensional outline drawings, pages 24 and 25. On the small-signal, general-purpose nuvistor types, temperatures as high as 250° C are permitted if the grid-circuit-resistance value is decreased, as shown in the grid-circuit-resistance rating charts, Figure 3. Maximum ratings for chassis temperature are of primary interest to circuit and package designers. Figure 4 shows combinations of plate dissipation and chassis temperature which produce metal-shell temperatures of 150° C in Zone "A" for industrial nuvistor tubes operating in conventional sockets under highline-voltage conditions (heater voltage of 6.9 volts). For example, the curve for type 7586 shows that this tube may be operated at full plate dissipation and maximum grid-circuit resistance at chassis temperatures up to 85° C without exceeding the maximum metalshell temperature rating. At chassis temperatures above 85° C, the plate dissipation must be reduced to the indicated percentages to avoid excessive shell tempera-The maximum permissible chassis temperature for zero plate dissipation is less than the shell temperature rating because the heater power increases the shell temperature. Fig.3 - Grid-circuit-resistance rating charts. It should be noted that the curves in Figure 4 apply only to chassis made of materials, such as steel or aluminum, that have good thermal conductivity. When nuvistors are mounted in low-conductivity materials, such as phenolic or fiber "printed-board" chassis, heat conduction is generally poorer, and it may be necessary to add additional heat-conduction paths to assure that the nuvistor temperature rating is not exceeded. Fig.4 - Combinations of plate dissipation and chassis temperature for metal-shell temperature of 150° C. Fig. 5 - The effect of shell temperature on transconductance, type 7586. The effect of shell temperature on electrical characteristics is shown in Figure 5. Although the curve shown is for the 7586, it is reasonable to assume that the general slope of the curve is the same for other nuvistors. The shift in transconductance is approximately 4 micromhos per $^{\rm O}{\rm C}.$ A general value for $\mid E_{\rm C}/T_{\rm E}\mid$, with $E_{\rm b}$ and $I_{\rm b}$ constant, is 0.2 millivolt per $^{\rm O}{\rm C}.$ #### Shock Nuvistors intended for military applications are required to withstand the following shock tests: - (1) 1000-g-level, 0.8-millisecond shock test in accordance with Method 1041A of MIL-E-1E; all voltages applied, - (2) 50-g-level, 11-millisecond, long-duration, shock test; no voltages
applied. The 1000-g, 0.8-millisecond shock test of the nuvistors is performed on samples from each production lot in accordance with paragraph 4.3.3 of MIL-E-1E; the 50-g, 11-millisecond shock test is performed as a Qualification Approval test. (All of the military nuvistor types are on Reduced Sampling for shock, with the Process Averages ranging from 1.5% to 4%.) Post-shock tests include shorts and continuity, change in transconductance, reverse control-grid current, heater-cathode leakage current, and sweep-frequency vibration. The nuvistors must be within the endpoint limits specified for these tests. # Sweep-Frequency Vibration and Fatigue Vibration The nuvistor military types are tested for both sweep-frequency vibration and fatigue vibration. The sweep-frequency vibration test is performed at the 1-g acceleration level, from 50 Hz to 15 kHz. The outputs obtained as the elements of the tube are vibrated at their resonant frequencies must be within specified limits. On types 7586, 7587, and 7895, the fatigue-vibration test is performed at a 2.5-g level, at 60 Hz, transversely, for a total of 48 hours in two directions. On types 8056 and 8058, the fatigue-vibration test is performed at a constant displacement of 0.08 inch, double amplitude, from 5 to 50 Hz and constant acceleration of 10 g from 50 to 500 Hz for a total of 9 hours in three mutually perpendicular directions. Post-vibration tests include shorts and continuity, change in transconductance, reverse control-grid current, heater-cathode leakage current, and sweep-frequency vibration. The nuvistors must be within the endpoint limits specified for these tests. ## Variable-Frequency Vibration Nuvistor types 7586, 7587, and 8058 were evaluated for variable-frequency vibration at displacement and acceleration levels more than twice those required in military specification MIL-T-5422 (ASG), Part 1, Curve 1. The conditions for this engineering test are as follows: - (1) Full operating voltages are applied to tubes. - (2) The displacement is held constant at 0.25 inch as the vibration frequency is varied from 5 to 40 Hz, - (3) A constant acceleration of 20 g is maintained as the vibration frequency is varied from 40 to 500 Hz, - (4) Total time required to sweep full range of vibration frequencies, 5 to 500 Hz, is 15 minutes, in each of three mutually perpendicular directions, - (5) Duration of test along each axis is 3 hours, - (6) Total test time is 9 hours per tube. At the end of this special test, the nuvistors were within the post-vibration endpoint limits for the characteristics and tests listed above. #### Random Vibration Nuvistors have been evaluated to determine their ability to withstand random vibration in accordance with a specification prepared by NASA for a satellite subsystem. The requirements were 20 g rms from 20 to 2000 Hz in three mutually perpendicular axes; test time was 4 minutes per axis. The tubes were not required to be electrically operated during vibration. Electrical tests of ten tubes subjected to the random-vibration test showed that the operation of all the tubes was within the post-vibration endpoints. #### Resonance-Cycling Vibration Because the mechanical resonances of the nuvistor grid and plate are extremely high (approximately 12 and 14 kHz, respectively), a cycling test over the cathode resonance range is performed. The test consists of cycling between 6 kHz and 10 kHz at 20 g for one hour in the transverse axis. A twenty-tube sample of 7586 nuvistors was tested to these conditions, and easily met the post-vibration endpoints for the tests. Similar resonance dwell tests have been conducted on the other nuvistor industrial and military types without deterioration of tube characteristics. ### Centrifuge (Linear Acceleration) A test-to-destruction conducted on thirty developmental prototype 7586 nuvistors indicates that these nuvistors can withstand centrifuge levels of 3000 g for 1 minute in each of the three major axes. In steps of 500 g, ten nuvistors were tested up to 10,000 g without failure in the X direction (long axis of the tube perpendicular to the radius of rotation); ten tubes were tested up to 16,000 g without failure in the Z direction (tube major axis co-linear with radius of rotation, and base facing center of rotation); and ten tubes were tested up to 3500 g without failure in the Z direction (tube major axis co-linear with radius of rotation, but with tube top facing the center of rotation). A second test of ten 7586 tubes to 3000 g for 1 minute in each axis met the post-vibration endpoints for the tests listed above. ## Altitude The basic nuvistor can perform satisfactorily at any altitude if tubes are operated within maximum ratings. Figure 6 shows the breakdown-voltage characteristics of the class C nuvistors, types 8627 and A15526. Fig.6 - Breakdown-voltage characteristics, type 8627 and dev. type A15526. #### **Nuclear Radiation** ## Steady State Nuvistors have been subjected to a steady-state nuclear-radiation environment consisting of both neutron and gamma fields. The nuvistors were exposed for 3 hours in a radiation field of a fast-neutron-flux of 10^{13} neutrons per square centimeter per second (E > 1 MeV) and a gamma intensity of 10^8 roentgens per second. The nuvistors were exposed to this environment under both operating and nonoperating conditions, with no permanent damage occurring in either case. In addition, the operating nuvistors continued to function during the 3-hour period. #### Pulse Nuvistor tubes have been operated as audio-frequency amplifiers and monitored before, during, and after exposure to pulsed nuclear irradiation having a peak-fast-neutron-flux of 10^{15} neutrons per square centimeter per second and a peak gamma intensity of 10^7 roentgens per second. The transient response of these tubes followed the nuclear-irradiation pulse and returned to normal, with no permanent damage to the tubes. The transient response of nuvistors is 1/10 to 1/5 of the response of conventional miniature glass tubes. I.F. Stacy and F.J. Feyder, "Pulsed Nuclear Irradiation of Nuvistors," RCA Review, Nov. 1966, Vol. XXVII, No.3, p. 408-424 (RCA reprint ST-3079). # NUVISTOR TRIODES 7586, 7895, 8056, 8393 AND 8628 These five industrial nuvistor triodes are useful in a wide range of applications, including rf- and if-amplifier service, audio-preamplifier service, and switching or on-off applications. The low heater-power requirements of the nuvistors make these types attractive for hybrid circuit applications. Figures 7 through 10 show the typical plate characteristics curves for the 7586, 7895, 8056, and 8628. Fig.7 - Typical plate characteristics, type 7586. The 7586 is a general-purpose, medium-mu triode for use in high-gain, low-noise amplifier applications at frequencies up to 400 MHz, and as an oscillator tube having excellent stability over a wide range of frequencies. The 7895 is a general-purpose, high-mu triode for use in high-gain, low-noise amplifier applications at frequencies up to 400 MHz and as an oscillator tube over a wide range of frequencies. The 8056 is a medium-mu triode designed for operation with plate-supply voltages of 12 to 50 volts. This tube is especially useful in low-noise rf-amplifier, if-amplifier, control, multivibrator, and cathode-follower circuits, and other applications that require a device having high input impedance and excellent temperature stability. When used with a low-voltage power supply, the 8056 can provide high gain with low noise in small- Fig.8 - Typical plate characteristics, type 7895. signal amplifier applications at frequencies up to $350\;\mathrm{MHz}.$ The 8628 is a high-mu triode for extremely small-signal voltage-amplifier applications. This nuvistor is particularly suitable for applications that require low noise, high input impedance, and low grid currents at frequencies up to 200 kHz. The 8393 is like the 7586 except for its heater rating of 13.5 volts/0.060 ampere. | | | | CA
Heater | CHARACTERISTICS, Class A ₁ Amplifier | | | | | | | MAXIMUM RATINGS
Absolute-Maximum Values
For Operation at Any Altitude | | | | | | | MAXIMUM
CIRCUIT
VALUES | | | | |------|------------------|----------------|----------------|---|--|-----------------|------|----------------------|------------------------|--------------------|---|-----------------|----------------|-----------------|----|----------------|----------------|------------------------------|-----------------------|-----------------|-----------------------| | TYPE | CLASSIFICATION | E _h | I _h | E _{bb} | E _b | $\mathbf{R_k}$ | | r _p
kΩ | g_{m} μ mho | I _b | E _{c (co)} for a I _b =10 \(\mu \) V | E _{bb} | E _b | -E _c | | I _c | I _k | P _b | e _{hkm}
V | Ē | (ckt) Cathode Bias MΩ | | 7586 | Medium-Mu Triode | 6.3 | 0.135 | -
-
75 | 26.5
40
- | _Ь
_ь
100 | 35 | | 7000
11500
11500 | 2.8
7.5
10.5 | -
-
-7 | 330 | 110 | 55 | 4 | 2 | 15 | 1 | ± 100 | 0.5° | 1 ^c | | 7895 | High-Mu Triode | 6.3 | 0.135 | 110 | | 150 | 64 | 6.8 | 9400 | 7 | -4 | 330 | 110 | 55 | 2 | 2 | 15 | 1 | ±100 | 0.5° | 1 ^c | | 8056 | Medium-Mu Triode | 6.3 | 0.135 | 24 | | 100 | 11.5 | 1.53 | 7500 | 8.7 | -5 @ 50 <i>µ</i> A | - | 50 | 55 | 2 | 2 | 15 | 0.45 | ± 100 | 10 ^d | 10 ^d | | 8393 | Medium-Mu Triode | 13.5 | 0.060 | | For Characteristics and Maximum Ratings, refer to Type 7586. | | | | | | | | | | | | | | | | | | 8628 | High-Mu Triode | 6.3 | 0.100 | 120 |] - | 200 | 127 | 41 | 3100 | 1.5 | -1.7 | 330 | 250 | 55 | +0 | 0 | 2 | 0.3 | ± 100 | 50 ^e | 100 ^e | Table IV - Electrical data for nuvistor triodes 7586, 7895, 8056, 8393, and 8628. - d For operation at metal-shell temperatures up to 150° C, For operation at other metal-shell temperatures, see
Grid-Circuit-Resistance Rating Chart. - Metal-shell (or envelope) temperature is limited to 150° C by an Absolute-Maximum Rating. The electrical characteristics and maximum ratings of the 7586, 7895, 8056, 8393, and 8628 are shown in Table IV. The weight of each of these single-ended nuvistors is approximately 1.9 grams. # **RF-Amplifier Service** The small size and short leads of the nuvistors make them particularly suitable for rf-amplifier applications at vhf. The high transconductance-to-plate-current ratio contributes to low tube noise factor. In addition, short-circuit input-impedance measurements indicate that the nuvistors have higher input resistance than other tubes having equivalent input capacitance and transconductance. These input-impedance measurements approximate the input resistance measurements of a completely neutralized triode in grid-drive operation. Increased input resistance results in increased gain, as shown by the following equation for power gain at vhf frequencies (impedance-matching losses are neglected): Power Gain = $$\frac{\mu^2 R_s R_L}{(r_p + R_L)^2}$$ where μ is the amplification factor of the tube, R_S is the source resistance (matched to input resistance of the tube), R_L is the load resistance, and r_p is the plate resistance of the tube. Gain characteristics of type 7895 operated at 200 MHz in a neutralized grid-drive amplifier in which Fig.9 - Typical plate characteristics, type 8056. ^a Unless otherwise specified. **b** $R_g = 0.5 \text{ M}\Omega$. For operation at metal-shell temperature of 150° C. For operation at other metal-shell temperatures, see *Grid-Circuit-Resistance Rating Chart*. Fig. 10 - Typical plate characteristics, type 8628. Fig. 12 - High-input-impedance cathode-follower circuit, type 8628. Fig.11 - Power gain as a function of conductance; type 7895 operated as a neutralized grid-drive amplifier tube. Fig. 13 - Typical characteristics, type 7587. the input and output networks are matched to a 50-ohm signal generator and a 50-ohm load impedance are shown in Figure 11. ## **IF-Amplifier Service** The design of video if-amplifier systems that use nuvistor triodes is discussed in RCA publication ST-2013.² Although written for television applications of nuvistor type 6CW4, the material is equally relevant to types 7895, 7586, or the low-voltage type 8056. # Audio-Preamplifier Service Type 8628 is especially useful in condenser-microphone preamplifiers, and piezoelectric- and ceramic-pickup preamplifiers. When operated in the high-input-impedance cathode-follower circuit shown in Figure 12, the following typical values are obtained: $$\begin{split} R_{O} \; (\text{for Ri} \approx 1 \; \text{G}\Omega) \approx 7 \; \text{k}\Omega, \\ I_{C(av)} = -0.1 \; \text{nA}, \; I_{b(av)} = 0.3 \; \text{mA}. \end{split}$$ #### **NUVISTOR TETRODE 7587** The use of a top cap for the plate connection of the 7587 sharp-cutoff tetrode provides excellent input-to-output isolation, low grid-No.1-to-plate capacitance (0.015 pF max.), and low output capacitance (1.4 pF). The low heater current of 150 milliamperes, the high transconductance of 10,600 micromhos at 10 milliamperes of plate current, and the small size of the 7587 make this tube particularly useful for general industrial and military applications, particularly in rf-amplifier, video-amplifier, and mixer service. Figure 13 shows the typical characteristics curves for type 7587; the electrical characteristics and maximum ratings of the 7587 are shown in Table V. The weight of the 7587 is approximately 2.4 grams. # IF-Amplifier Design A simple five-stage, 60-MHz if amplifier that uses the type 7587 nuvistor is discussed in RCA publication AN-193.³ This amplifier has four staggered, single-tuned stages, a bandwidth of 8 MHz, and the gain-bandpass characteristics shown in Figure 14. #### Gain-Bandwidth Product The bandwidth figure of merit (GB) for a tetrode is given by $$GB = \frac{g_{\rm m}}{2\pi(C_{\rm i} + C_{\rm o})}$$ The RCA 7587 has a cold input capacitance (C_i) of 6.5 pF, a cold output capacitance (C_o) of 1.4 pF, and a transconductance (g_m) of 10,600 micromhos. Substitution of these values in the above formula produces a Fig. 14 - Gain-bandpass characteristics of a 5-stage, 60-MHz if amplifier utilizing type 7587. | RCA Dark Heater | | | | CHARACTERISTICS, Class A ₁ Amplifier | | | | | | | MAXIMUM RATINGS Absolute-Maximum Values For Operation at Any Altitude | | | | | | MAXIMUM
CIRCUIT
VALUES
R _{a1} (ckt) | | | | | |-----------------|-------------------------|----------------|----------------|---|------------------|----------------|--------------------------|-------------------|----------------|-----------------|---|------------------------|----------------|---------------------|------------------|------------------------|---|----------------|-----------------------|-------|-----------------------| | | | E _h | I _h | E _{bb} | E _{cc2} | $\mathbf{R_k}$ | ґ р
k Ω | g_{m} μmho | I _b | I _{c2} | for
I _b = 10 μA
V | E _{bb}
V | E _b | -E _{c1} | e _c 1 | I _c]
mA | ١. | P _b | e _{hkm}
V | Fived | Cathode
Bias
MΩ | | 7587 | Sharp-Cutoff
Tetrode | 6.3 | 0.150 | 125 | 50 | 68 | 200 | 10600 | 10 | 2.7 | -4.5 | 330
E _{cc} | 250
2 =33 | 55
0 v, e | 2
c2 | 2
=110 | | | ±100
0.2 W | | 1 ^c | Table V - Electrical data for nuvistor tetrode 7587. ² K.W. Angel and J. Gote, "The Nuvistor Triode in Video IF-Amplifier Circuits," reprinted from IRE Transactions on Broadcast and Television Receivers, July 1961. ^{3 &}quot;Use of the RCA-7587 Industrial Nuvistor Tetrode in RF and IF Applications", December, 1961. nominal figure of merit of 214 MHz. However, the input capacitance for a tube in a socket, under operating conditions, is approximately 9 pF. Consequently, if the stray capacitance of the output connection is neglected, the actual bandwidth figure of merit for an operating tube is approximately 162 MHz. | | | Type
6AK5 (5654) | | Type
6688 | Type
7587 | |--------------------------|------|---------------------|------|--------------|--------------| | Gain Bandwidth (| MHz) | | | | | | $GB = \frac{gm}{2\pi C}$ | | 71 | 94 | 131 | 148 | | Gain per Stage | (dB) | 15.7 | 18.2 | 21.1 | 22.1 | Table VI - Comparison of calculated gain-bandwidth product of the 6AK5 (5654), 6AH6, 6688, and 7587. A comparison of the calculated gain-bandwidth product of the 7587 with those of the 6AK5(5654), 6AH6, and 6688 is shown in Table VI. The calculations are based on the requirements for a six-stage radar if amplifier that operates at a frequency of 60 MHz, has a bandwidth of 10 MHz, and provides an overall gain of 113 dB. Total stray capacitance estimates have been included in all calculations. The six stages are assumed to be arranged in two staggered triples, each of which has a bandwidth of 11.6 MHz. (See MIT Radiation Laboratory Series, Vol. 18, p.191.) up to 1.2 GHz. In addition, the 8058 has a shock rating of 1000 g and exhibits an extremely stable noise factor throughout 5000-hour life tests. Figure 16 shows the typical plate characteristics for type 8058. The weight of the 8058 is approximately 2.2 grams. The electrical characteristics and maximum ratings of the 8058 are shown in Table VII. For typical operating data (E_{bb} = 110 V, R_k = 47 Ω , I_b = 10 mA),see Table VIII. Fig. 15 - Noise figure and conversion power gain as functions of oscillator injection voltage; type 7587 as a mixer tube at 200 MHz. | TVDE | CL ASSISTED ATION | Dark | CA
Heater | СН | CHARACTERISTICS, Class A ₁ Amplifier | | | | | | MAXIMUM RATINGS Absolute-Maximum Values For Operation at Any Altitude | | | | | | MAXIMUM
CIRCUIT
VALUES | | | | |---------------------|-------------------|----------------|----------------------|----------------|---|----------|----------------------|----------------|---|-----------------|---|-----------------|---------------------|----------------|---|----------------|------------------------------|-------|--------------------------------|----| | TYPE CLASSIFICATION | E _h | I _h | E _{bb}
V | $\mathbf{R_k}$ | μ | 'p
kΩ | $g_{ m m}$ μ mho | I _b | E _{c (co)} for
I _b = 10 μA | E _{bb} | E _b | -E _c | e _c
V | I _c | | P _b | e _{hkm}
V | Fixed | (ckt)
Cathode
Bias
MΩ | | | 8058 | High-Mu Triode | 6.3 | 0.135 | 110 | 47 | 70 | 5.6 | 12400 | 10 | -5 | 330 | 150 | 55 | 0 | 0 | 15 | 1.5 | ± 100 | 0.5° | 1c | Table VII - Electrical data for the 8058 nuvistor triode. ### Mixer Operation Figure 15 illustrates conversion power gain and noise figure performance as functions of oscillator injection voltage for the 7587 operating as a mixer at 200 MHz. The signal and oscillator voltages are both applied to grid No.1, and the output is observed at 40 MHz. As used in Figure 15, injection voltage is the control-grid bias developed by the local oscillator. # **NUVISTOR UHF-AMPLIFIER TRIODE 8058** The 8058 is a double-ended, high-mu nuvistor triode which is especially useful in cathode-drive amplifier service. The design of the 8058 permits a low-inductance grid-to-ground connection by means of the metal shell. The performance of the 8058 is comparable to that of the 7077 and 7552 ceramic-metal triodes at frequencies | | 450 MHz | 700 MHz | | 1.2 GHz | | |---------------|---------|-------------|------|-------------|-----| | Power Gain | 16.5 | 12.5 | 13 | 10.5 | dB | | Bandwidth | 6f | 12 f | 179 | 12 f | MHz | | Noise Factorh | 6.5 | 9.5 | 11.5 | 12.2 | dΒ | f Tunable cavity Table VIII - Typical operating data for type 8058 in cathode-drive
rf-amplifier service. # NUVISTORS FOR CLASS C SERVICE - 8627, A15526 The nuvistor class C types, like the other industrial nuvistors, can withstand severe environmental conditions. In addition, their compactness is a marked advantage at high frequencies. Although detailed h Argon noise source g Fixed coaxial cavity typical operating data are given for frequencies up to 1.2 GHz, useful operation is obtainable at even higher frequencies. Fig. 16 - Typical plate characteristics, type 8058. The RCA 8627 is a double-ended power triode especially useful in cathode-drive low-level class C rf-power-amplifier, oscillator, or frequency-multiplier applications at frequencies up to 1.2 GHz. Features of the 8627 include typical useful power outputs at 1 GHz of 1.4 watts as a class C amplifier, 1.25 watts as an oscillator, and 0.7 watt as a frequency doubler. Developmental type A15526 is a high-mu, double-ended nuvistor triode intended for low-power class C service. This nuvistor is especially suitable for CW or grid-pulse operation as a power amplifier, oscillator, or frequency multiplier at frequencies up to 1.2 GHz. The 8627 and A15526 weigh approximately 2.2 and 2.9 grams, respectively. Typical characteristics curves for the 8627 and the A15526 are shown in Figures 17 through 20. The grid-circuit-resistance rating chart for these types and the grid-dissipation rating chart for the A15526 are shown in Figures 21 and 22. Class C nuvistors can operate together in a chain, with the 8627 as an oscillator and frequency multiplier tube and as either a power output tube or a driver tube for the A15526. The A15526 may be used as a frequency multiplier tube, power output tube, or a driver tube for an RCA Cermalox power tube, such as the 6816 or the 7842. The chart on page 16 shows electrical data maximum ratings, and typical operating data for the 8627 and A15526. For pulsed peak cathode current limits on the class C types, see the pulse rating chart, Figure 23; for the A15526 curve of plate- and grid-seal-to-chassis temperature as a function of plate dissipation, see Figure 24. Fig. 17 - Typical characteristics, type 8627. Fig. 18 - Typical constant-current characteristics, type 8627. Fig. 19 - Typical characteristics, dev. type A15526. Fig. 20 - Typical grounded-grid constant-current characteristics, dev. type A15526. Fig. 21 - Grid-circuit-resistance rating chart. Fig. 22 - Grid-dissipation rating chart, dev. type A15526. Fig. 23 - Pulse rating chart, type 8627 and dev. type A15526 — based on typical pulse rating chart shown in "A Guide for Pulse Rating Low Power Vacuum Tubes", JEDEC Publication No.41, September, 1963. Fig.24 - Temperature differentials, from plate seal to chassis and grid seal to chassis, as functions of plate dissipation, dev. type A15526. # NUVISTORS FOR CLASS C SERVICE - 8627, A15526 #### **ELECTRICAL DATA** #### TYPICAL OPERATION - CCS | | 862 | | Dev. Type
A 15526 | | As cathode-drive rf power amplifier | | | | | | |---|----------|------------|----------------------|-----------|--|---------------------|-----|--|--|--| | Heater Voltage, dc or ac E_h | 6. | | 6.3 | v | 8627 | Dev. Туре
A15526 | ? | | | | | Heater Current at E_h = 6.3 V I_h | 15 | 0 | 340 | mA | Frequency f 1 | 1 | GHz | | | | | Direct Interelectrode Capacitances: | • | | | | Heater Voltage E _f 6.3 | 6.3 | V | | | | | Input: K to (G,S,H) c _i | 6. | 0 | 9.6 | pF | DC Plate-to-Grid Voltage E _{bg} 180 | 206 | v | | | | | Output: P to (G,S,H)c _o | 1. | 2 | 2.7 | pF | DC Cathode-to-Grid Voltage Ekg 5.5 | 5.8 | v | | | | | Heater to cathode chk | 1. | 4 | 2.6 | pF | From grid resistor of Rg 1200 | 300 | Ω | | | | | Cathode to plate ckp | , - | | 0.050 | pF | Average Plate Current I _{b(av)} 20 | 50 | mA | | | | | For the following characteristics, se | e Condit | tions be | low: | | Average Grid Current I _{c(av)} 4.5 | 19 | mA | | | | | Amplification Factor μ | 60 | 70 | 100 | | Driving Power (Approx.) P _g 0.15 | 1 | W | | | | | Plate Resistance (Approx.)r _p | 6300 | 5400 | 6400 | Ω | Useful Power Output (Approx.) Po(useful)1.4 | 5 | W | | | | | Transconductance g _m | 9500 | 13000 | 18000 | μ mho | As cathode-drive frequency do | ubler | | | | | | DC Plate Current Ib | 9 | 11.5 | 15 | mA | Output Frequency f _o 1 | 1.2 | GHz | | | | | Cutoff DC Grid Voltage: E _C | (co) | | | | Heater Voltage E _f 6.3 | 6.3 | v | | | | | For $I_b = 10 \mu A \dots$ | - | - 5 | - | V | DC Plate-to-Grid Voltage E _{bg} 180 | 200 | V | | | | | For $I_b = 100 \ \mu A \dots$ | - | - ' | - 5 | V | DC Cathode-to-Grid Voltage E _{kg} 8.5 | 11 | V | | | | | Conditions: | | | | | From grid resistor of R_g 1200 | 1000 | Ω | | | | | Heater Voltage E _h | 6.3 | 6.3 | 6.3 | v | Average Plate Current Ib(av) 18.5 | 38 | mA | | | | | Plate Supply Voltage Ehl | 150 | 110 | 200 | v | Average Grid Current I _{c(av)} 3 | 10.5 | mA | | | | | Grid Supply Voltage E _{CC} | • | 0 | 0 | v | Driving Power (Approx.) P_g 0.3 | 1 | W | | | | | Cathode Resistor R _k | - | 47 | 68 | Ω | Useful Power Output (Approx.) Po(useful) 0.7 | 2 | W | | | | # MAXIMUM RATINGS - Absolute-Maximum Values For operation as a Low-Level Class-C RF-Power-Amplifier, Oscillator, or Frequency-Multiplier Tube at frequencies up to 1.2 GHz | | | 627
ⁿ ICAS ⁿ | Dev. Type
A15526
ICAS | | |--|--------|---------------------------------------|-----------------------------|---------------------------| | Plate Supply Voltage Eb | b 600 | 600 | 1000 | V | | DC Plate Voltage Eb | 250 | 300 | 1000 | V | | Grid Voltage: | | | | | | Peak e _{Cl} | m 4 | 5 | 30 | V | | DC E _c | | +0
-100 | +0
-100 | V
V | | Peak Heater-Cathode Voltage . e_{hl} | km±100 | ±100 | ±100 | V | | Average Grid Current I _c (| | 6 | - | mA | | Average Cathode Current Ik(| av) 25 | 30 | 75 | mA | | Grid Dissipation Pg | | - | 200 ^p | $\mathbf{m}\mathbf{W}$ | | Plate Dissipation Pb | | 2.7 | 6 | W | | Envelope Temperature T _E | 200 | 200 | 200 | $^{\mathrm{o}}\mathrm{C}$ | # **MAXIMUM CIRCUIT VALUES** | | | CCS | ICAS | ICAS | | |--|--------------------|-------|----------------------|---------------------|--------------------| | Grid-Circuit Resistance: | R _{g(ckt} |) | | | | | For fixed-bias or cathode-
bias operation: | 8 | | | | | | For $T_{\rm E} \leq 150^{\rm O}{ m C}$ | | 50 | 50 | 50 | $\mathbf{k}\Omega$ | | For ${ m T_E} \stackrel{>}{_{\sim}} 150^{ m O}{ m C}$ and $\stackrel{<}{_{\sim}} 200^{ m O}{ m C}$ | - | See (| Grid-Circi
Rating | uit-Resisi
Chart | tance | # TYPICAL OPERATION As pulsed cathode-drive rf power amplifier (engineering test) | 1 1 | GHz | |--------|---| | 0 1000 | V | | 5 20 | V | | 5 4.75 | mA | | 2.4 | mA | | 1 1 | % | | 5 5 | μ s | | 0 50 | W | | 0 240 | W | | | 1 1 0 1000 5 20 5 4.75 4 2.4 1 1 5 5 0 50 | Measured without external shield in accordance with the current issue of EIA Standard RS-191. ^m Continuous Commercial Service. Intermittent Commercial and Amateur Service. No operating or ON period exceeds 5 minutes and every ON period is followed by an OFF or standby period of the same or greater duration. For operation at metal-shell temperatures up to 100° C. For operation at other metal-shell temperatures, see Grid-Dissipation Rating Chart. q Measured at load. This developmental type is like the 8627 except for a 1000-volt maximum rating on both Plate Supply Voltage and DC Plate Voltage. #### **WARM-UP TIME** Typical cathode-current warm-up time as a function of heater voltage for nuvistors is shown in Figure 25. In this curve, cathode-current warm-up time is the time for the tube to reach 80 per cent of normal conduction. Normal production tolerances will cause minor deviations from this curve. At E_h = 6.3 V, warm-up time is approximately 13 seconds. Fig. 25 - Cathode-current warm-up time as a function of heater voltage. Fig. 26 - Generalized relationship between electron-tube equivalent noise resistance and frequency for different levels of plate current. ## **NOISE** Noise in electron tubes arises primarily from three different phenomena: shot noise, caused by the random arrival of electrons at the anode; induced grid noise, due to currents induced in the grid circuit by the random transit of electrons through the grid; and flicker noise, from random variations in cathode activity. Above 30 MHz, induced grid noise is predominant. Flicker noise, which has a 1/f characteristic, predominates in the sub-audio region. Shot noise is relatively independent of frequency. # Low-Frequency Noise The optimum conditions for good flicker noise performance are different from the conditions for optimum shot noise performance, as shown in Figure 26, a generalized representation of low-frequency noise in electron tubes. Curves A through D represent increasing plate current, while the frequency scale represents approximately 10 Hz to 100 kHz. At sub-audio frequencies, the flicker noise is greatest at high levels of plate current. Types 7586 and 7895 display excellent flicker noise characteristics. Figures 27 and 28 represent equivalent flicker noise resistances at 10 Hz for typical 100-tube lots of each of these nuvistor types, at optimum operating conditions for each type. Equivalent shot-noise resistances in the order of 200 to 300 ohms have been observed for types 7586 and 7895 at approximately 455 kHz under optimum conditions, with plate voltage approximately 20 to 30 volts and grid bias voltage approximately 0.25 volt. The nuvistor displays noise performance superior to that of the transistor when each is driven from a high resistance source ($R_{\rm S} > 500~\Omega$), such as a vidicon camera tube (which acts like a constant-current generator) or an
untuned loop antenna. ### RF Noise The basic single-ended nuvistor triode has a useful operating range in excess of 400 MHz. The double-ended triodes utilize the shell to provide a low-inductance grid-to-ground connection, and have a useful frequency range of 200 MHz to above 1200 MHz. The tetrode is useful up to 200 MHz, but has added partition noise from the screen grid. For this reason, the noise of the tetrode is usually defined by the equivalent noise resistance, while for the other types it is defined in terms of noise figure, usually at 200 MHz for comparison purposes. Figure 29 shows noise figure as a function of frequency for several nuvistor triodes operated under noise-matched conditions at a plate current of 7 to 10 mA. Typical noise-figure values are shown for the 7586, 7895, and 8056 from 30 MHz to 450 MHz. The noise-figure data shown for frequencies above 450 MHz were obtained for an 8058 nuvistor operated in a grounded-grid configuration without neutralization. These data include the increase in noise figure that results from input circuit losses and represent practical values rather than theoretical tube values. At rf frequencies below 30 MHz the circuit noise, particularly the noise induced by grid current, becomes a strongly contributing factor, because the real portion of the circuit impedance is often high. The optimum noise point is generally located in the -0.25 to -1.3-volt-bias region, depending on the frequency, with plate current of 6 to 12 mA. The basic triode has an equivalent noise resistance of 200 to 500 ohms under these Fig. 27 - Equivalent flicker noise resistance at 10 Hz, type 7586. Fig. 28 - Equivalent flicker noise resistance at 10 Hz, type 7895. conditions. The 7587 tetrode has a typical equivalent noise resistance of about 1500 ohms. The higher value of noise for the tetrode is due to partition noise, caused by the random division of cathode current between the anode and the screen grid. Optimum noise in the 90 to 400 MHz region for the 7586, 7895, and 8056, and the 400 to 1200 MHz region for the 8058, occurs between 8 and 12 mA in all four types, with the plate voltage in each case proportional to the mu. Typical range of E_b and I_b values for optimum noise performance are: | | 8056 | 7586 | 7895 | 8058 | | |------------------|-------|-------------|--------|--------|----| | $\mathbf{E_b}$ | 12-30 | 45-75 | 75-125 | 75-150 | V | | $I_{\mathbf{b}}$ | 8-12 | 8-12 | 8-12 | 8-12 | mΑ | The typical noise contour for the 8056, shown in Figure 30, can also be applied to the 7586, 7895, and 8058, with appropriate changes in the plate voltage scale within the range of values shown above. # **Description of Measuring Circuit** The test circuit used for obtaining the noise contours for the 8056 is shown in Figure 31. The circuit Fig. 29 - Noise figure as a function of frequency, types 7586, 7895, 8056, 8058. consists of a partially neutralized grounded-cathode amplifier stage which has a bandwidth of approximately 4 MHz. The output of the amplifier is matched to a 50-ohm load through a pi network; a similar network is used to adjust the source admittance for minimum noise figure. # INPUT CHARACTERISTICS # **Grid Current** In normal operation, the grid current of the nuvistors is usually very low, in the order of 1 nanoampere or less. Contact potential of 1.0 to 1.2 volts is very stable from tube lot to tube lot. Figure 32 shows typical grid-current curves for the 7586, 7895, and 8056. Even lower values of grid current can be expected for the 8628, which is specifically designed to minimize grid emission. Fig. 30 - Noise figure at noise match, type 8056. C_1 - 2200 pF, uncoated disc ceramic, soldered directly on input connector C_2 - Hammarlund APC-50 C₃ - 22 pF, tubular ceramic C₄ - E.F. Johnson 5 M11 C_5 - E.F. Johnson 9 MB11 C_6 - E.F. Johnson 9 M11 C₇ - 2200 pF, uncoated disc ceramic, soldered directly on chassis C_8 - Hammarlund APC-25 C₉ - 2200 pF, uncoated disc ceramic, soldered directly on output connector L_1 , L_4 , L_7 - Ohmite rf choke, Z-235 L₂ - 1 loop of No.14 magnet wire 9 cm long, bent to form a U 2 cm wide, 1 to 2.5 cm from chassis L₃ -B & W Miniductor 3002, 5-1/2 turns L₅ - 5 cm of No.14 magnet wire, slightly bent, 1.8 cm from chassis L_6 - silvered strap 0.4 cm wide, 2.5 cm long, bent to form a U 1 cm wide Chassis 5-1/2" long, 4" wide, 1-1/2" deep, of 0.024" copper tinned on the wiring side, partitioned to the full depth 2-1/2" from the input wall. The partition cuts across the center of the socket and is sliced 1/16" into the socket. Neutralizing coil L3 and capacitor C4 are mounted on the grid side of the partition and partially shielded from the input circuit. Fig.31 - Test circuit for obtaining noise contours for type 8056. # Input Conductance and Susceptance The single-ended triodes 7586, 7895, and 8056 have a socketed input resonant frequency of approximately 610 MHz, with inductance of 8 nH in the socket pins and 8.5 pF inter-pin capacitance. The curves in Figure 33 show typical values of input conductance and susceptance as functions of frequency, when the 7586, 7895, and 8056 are operated in the plate current range of 8 to 10 mA. Fig.32 - Typical values of grid current as functions of grid voltage, types 7586, 7895, 8056. 9205-14578 Fig.33 - Typical values of conductance and susceptance as functions of frequency, types 7586, 7895, and 8056. When the current through a tube is varied, as it may be to control the gain of an amplifier stage, variations in the input conductance and input capacitance affect the gain-frequency characteristics of the circuit connected to the input of the tube. Table IX shows the values of short-circuit input capacitance and short- circuit input conductance of type 7587 for normal operating conditions, plate-current cutoff conditions, and with the tube cold. These values were measured in a socket at a frequency of 60 MHz. The input capacitance values are independent of frequency up to approximately 150 MHz. | Operating Condition | Input
Capacitance
(pF) | Input
Conductance
(µmho) | |---|------------------------------|--------------------------------| | Tube operating $(I_b = 10 \text{ mA})$ | 9.0 | 100 | | Tube cut off $(I_b = 0)$ | 7.7 | 18 | | Tube cold (no heater voltage applied) | 7.1 | 17 | | Change from cutoff to $l_b = 10 \text{ mA}$ | 1.3 | 82 | | Change when heater voltage is applied | 0.6 | ٠ _ | Table IX - Variation of short-circuit input capacitance and input conductance at 60 MHz, type 7587. #### Transit-Time Estimates The calculation of transit time of the electron in a vacuum tube is generally based on these assumptions: - (1) Electron velocity at the cathode is zero. - (2) Tube geometry is uniform for all electron paths. Although these assumptions are somewhat unrealistic, the calculated values of transit time do provide a basis for comparison of different tube constructions. The velocity of an electron with one electronvolt kinetic energy is 6 x 10⁷ centimeters-per-second at grid No.1, and the velocity varies with the square root of the energy in electronvolts. The average velocity under space-charge-limited conditions, for an initial velocity of zero and ideal parallel-plane geometry, is one-third the final velocity. The average velocity when space charge can be neglected, with parallel plane geometry, is the mean of the initial and the final velocity. Examples of transit-time calculations are given in Table X. Grid-No.1 wire diameter (0.0008 in) was disregarded in the calculations because it has very little effect on the results. For the tetrode 7587, the cathode-grid-No.2 time is probably most significant with respect to input loading and noise. The total transit time is important when feedback is considered. Under the assumptions used, the expected phase delay of the plate current with respect to the cathode-to-grid voltage is 2/3 of the total transit time, or 2×10^{-10} seconds for the example shown for type 7586. This delay corresponds to a phase angle delay of 1/4 cycle (90°) at 1250 MHz. Because the current varies as the grid voltage raised to the 3/2 power, if the effective voltage at the grid is increased 4 times, the current is increased 8 times, and the transit time is halved. It may be noted that moderate changes in current density will not change the transit time substantially. | Dimensions | 7586 | 7895 | 7587 | | |---------------------|------------------|------------------|-------------------|----------| | Coated cathode O.D. | 0.062 | 0.062 | 0.062 | in | | Grid No.1 I.D. | 0.066 | 0.066 | 0.066 | in | | Plate I.D. | 0.080 | 0.102 | 0.248 | in | | Grid No.2 I.D. | - | - | 0.077 | in | | Spacings | | | | | | Cathode-grid No.1 | 0.002
(0.005) | 0.002
(0.005) | 0.002
(0.005) | in
cm | | Grid No.1-plate | 0.007
(0.018) | 0.018
(0.045) | - | in
cm | | Grid No.1-grid No.2 | • | : | 0.0055
(0.014) | in
cm | | Grid No.2-plate | - | - | 0.086
(0.215) | in
cm | Assuming 1 electronvolt (eV) energy at grid No.1 and 100 eV at the plate; and for the 7587, 50 eV at grid No.2: | plate; and for the 7587, | 50 eV at grid | 1 No.2: | | | |---------------------------------|-------------------------|-----------------------|-----------------------|------| | Velocity | | | | | | At grid No.1 | 6×10^{7} | 6×10^{7} | 6×10^{7} | cm/s | | At plate | 6 x 10 ⁸ | 6 x 10 ⁸ | 6 x 10 ⁸ | cm/s | | At grid No.2 | - | • | 4 x 10 ⁸ | cm/s | | Average, cathode-grid No.1 | 2 x 10 ⁷ | 2 x 10 ⁷ | 2 x 10 ⁷ | cm/s | | Average,
grid No.1-plate | 3.3 x 10 ⁸ | 3.3×10^8 | - | cm/s | | Average,
grid No.1-grid No.2 | - | - | 2.3×10^8 | cm/s | | Average,
grid No.2-plate | - | - | 5 x 10 ⁸ | cm/s | | Time | | | | | | Cathode-grid No.1s | 2.5 x 10 ⁻¹⁰ | 2.5×10^{-10} | 2.5×10^{-10} | s | | Grid No.1-plate
 0.5×10^{-10} | 1.4×10^{-10} | • | s | | Grid No.1-grid No.2 | - | • , | 0.7×10^{-10} | s | | Grid No.2-plate. | - 10 | - 10 | 4.3×10^{-10} | s | | Total transit time ^s | 3×10^{-10} | 3.9×10^{-10} | 7.5×10^{-10} | · s | For type 7895, with 200 eV at the plate, cathode-grid-No.1 time is 1 x 10^{-10} s and total transit time is 3.5 x 10^{-10} s. Table X - Transit-time calculations for the 7586, 7895, and 7587 nuvistors. #### **CROSS MODULATION** The cross-modulation characteristic indicates the capability of a tube to handle large interfering signals. Figure 34 shows the rms voltage of a 30%-modulated interfering signal at the grid of the tube which results in 1% of the modulation signal being transferred to the desired carrier. Cross-modulation curves are shown for the 8056 and 7895. Although a curve for the 7586 is not shown, its performance curve is between that of the 7895 and the 8056. ## **OPERATING PRECAUTIONS** To realize fully the reliability and long life of the nuvistor, adequate care must be exercised in the choice of operating parameters so that the tube remains within its maximum ratings, established for normal variations of line and/or power supply voltages. The nuvistor is conservatively rated to cover the widest possible choice of circuits. If it should be necessary, however, to exceed a rating in a specific circuit, an RCA field representative should be consulted. In such cases, technical approval of operation "out of ratings" should be obtained from the RCA field representative in order to maintain existing warranties. Fig.34 - 1% cross-modulation characteristics, types 7895 and 8056. When the nuvistor is operated at positive grid voltages, the peak positive grid-to-cathode voltage rating should be observed. In all close-spaced, high-transconductance electron tubes rapid cathode poisoning can occur if the positive grid rating is exceeded. For applications that require high values of peak grid to cathode voltage, use of the class C nuvistor types should be considered. The relatively small mass of the nuvistor heater, as compared to that of other vacuum tubes, contributes to a peculiar vibration phenomena that can produce extraneous signals in extremely sensitive low-level signal applications. In such applications, when vibration environments exist, shock mounting is recommended. Finally, for maximum reliability it is recommended that full advantage be taken of the conduction-cooled structure of the nuvistor, and that proper thermal contact between tube and chassis be assured, particularly when tubes are operated at maximum dissipations. ST-3079 # ADDITIONAL TECHNICAL INFORMATION Additional technical information about the commercial RCA nuvistor tubes included in this booklet is available from your nearest RCA Field Sales Office or from Commercial Engineering, RCA Electronic Components and Devices, Harrison, New Jersey 07029. A technical bulletin for each of the commercial nuvistor types, and the following Application Notes and reprint can be obtained on request: | AN-193 | Use of the RCA-7587 Industrial Nuvistor Tetrode in RF and IF Applications | |--------|---| | AN-195 | Noise and Gain of the RCA-8056 Nuvistor
Triode at 200 Megacycles | | AN-196 | Temperature Ratings and Thermal Considerations for Nuvistor Tubes | Pulsed Nuclear Irradiation of Nuvistors For further technical information about nuvistor developmental types, including preliminary and tentative data sheets for a specific type, contact your nearest RCA Field Sales Office or the Marketing Manager, Nuvistors, RCA Electronic Components and Devices, Harrison, New Jersey 07029. RCA also manufactures the following nuvistor tubes intended for home-entertainment applications: 2CW4, 6CW4, 13CW4; 2DS4, 6DS4; 2DV4, 6DV4; 2EG4. Technical bulletins for these types and reprint ST-2013 (The Nuvistor Triode in Video IF-Amplifier Circuits) are available from the RCA Field Sales Offices or from Commercial Engineering at the above address. Information furnished by RCA is believed to be accurate and reliable. However, no responsibility is assumed by RCA for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of RCA. # NUVISTOR-TUBE SOCKET AND CONNECTOR INFORMATION | | | SOCKET | | | | | |------------------|------------------------------|-------------------------------|------------------------------------|---|--|--| | NUVISTOR
TYPE | Mounting | Body
Material ^U | Cinch Mfg.
Co. ^v No. | Cinch-Jones
Sales-Division
Distributor No. W | | | | 7586 | | MFP | 133 65 10 001 | 5NS | | | | 7587 | Crimp | DIALL * | 133 65 92 025 | - | | | | 7895 | | TEFLON | 133 65 91 034 | - | | | | 8056 | Flange | MFP | 133 65 10 003 | 5NS-1 | | | | 8393 | Printed-Board
(Stand-Off) | MFP | 133 65 10 009 | 5NS-2 | | | | 8058
8627 | Crimp | MFP | 133 65 10 041 | 5NS-3 | | | | A15526 | Crimp | HALON ^y | 133 67 90 040 | 5NS-4 | | | | 0000 | | DIALL | 133 65 92 025 | | | | | 8628 | Crimp | TEFLONZ | 133 65 91 034 | and the second of the second desired and | | | | NUVISTOR
TYPE | TOP-CAP CONNECTOR | | | |----------------------|---------------------------------------|--|--| | 7587
8058
8627 | | Ifg. Co. No. 422 03 22 017 or 422 03 22 024, ralent "1/4-inch" connector. | | | A 15526 | For Distributed-Con-
stant Circuit | International Electronic Research Corp. ac
Therma-Link Retainer Part No.TXBE-032-031G | | | A15526 | For Lumped-Con-
stant Circuit | Wakefield Engineering, Inc. ab Semiconductor
Cooler Type NF207 | | Information on sockets or connectors having different materials or finishes may be obtained from the manufacturers listed. Sockets or connectors having comparable mechanical and electrical characteristics may be available from other manufacturers. MFP =general-purpose, low-loss Mica-Filled Phenolic; DIALL = glass-filled Diallyl Phthalate for missile, satellite, and other high-vacuum applications; TEFLON and HALON are for low-rf and low-leakage loss, high-temperature applications. V 1026 South Homan Ave., Chicago, Illinois 60624. Tel: (312) NE 2-2000. W This number appears in many distributors' catalogs. TRADE MARK: Mesa Plastics Co., Los Angeles, Calif. Y TRADE MARK: Allied Chemical Corp., Morristown, N.J. Z TRADE MARK: E.I. DuPont de Nemours & Co., Inc., Wilmington, Del. QQ 135 West Magnolia Blvd., Burbank, Calif. 91502.Tel: (213) 849-2481. ab 139 Foundry St., Wakefield, Mass. 01880. Tel: (617) 245-5900 # TYPES 7586, 7895, 8056, 8393, 8628 # **DIMENSIONAL OUTLINES** Dimensions in Inches JEDEC No. 4-5 Note 1: Maximum O.D. of 0.440 "is permitted along 0.190" lug length. Note 2: Envelope temperature should be measured in Zone # **TERMINAL DIAGRAMS Bottom View** # **JEDEC 12AS** # Pin 1* - Do Not Use Pin 2 - Plate Pin 3* - Do Not Use Pin 8 - Cathode Pin 9* - Do Not Use socket insertion plane. Pin 4 - Grid Pin 10 - Heater Pin 5* - Do Not Use Pin 12 - Heater Pin 6* - Do Not Use Pin 7* - Do Not Use Pin 1* - Do Not Use Pin 2 - Grid No. 2 Pin 8 - Cathode Pin 9* - Do Not Use Pin 3* - Do Not Use Pin 4 - Grid No. 1 Pin 10 - Heater Pin 5* - Do Not Use Pin 12 - Heater Pin 6* - Do Not Use Top Cap - Plate Pin 7* - Do Not Use Pin is of a length such that its end does not touch the # MODIFIED BOTTOM VIEWS With Element Connections Indicated and Short Pins Not Shown 92CS-12163RI For SOCKET & CONNECTOR INFORMATION, see Page 23 # # DIMENSIONAL OUTLINES Dimensions in Inches JEDEC No. 4-6 Note 1: Maximum O.D. of 0.440 " is permitted along 0.190 " lug length. Note 2: Envelope temperature should be measured in Zone $^{\prime\prime}\Delta^{\prime\prime}$. # TERMINAL DIAGRAMS Bottom
View JEDEC 12CT Pin 2 - Cathode Pin 4 - Cathode Pin 10 - Heater Pin 7* - Do Not Use Pin 12 --Heater Metal Shell - Grid Pin 8 - Cathode Top Cap - Plate Pin 1 - Cathode Pin 2 - Cathode Pin 10 - Heater Pin 3* - Do Not Use Pin 12 - Heater Pin 4 - Cathode Metal Shell - Grid Pin 5* - Do Not Use Top Cap - Plate * Pin is of a length such that its end does not touch the socket insertion plane. # MODIFIED BOTTOM VIEWS With Element Connections Indicated and Short Pins Not Shown # NOTES # RCA FIELD SALES OFFICES | EQ | U | ΙP | м | E١ | JT | |----|---|----|---|----|----| | | | | | | | # DISTRIBUTOR | CALIFORNIA | | CALIFORNIA | 0. 401 0151 | |---|--------------------------------|--|------------------------------| | 6363 Sunset Blvd., Hollywood, Calif., 90028
4546 El Camino Real, Los Altos,
Calif., 94022 | (213) 461-917
(415) 948-899 | | 3) 461-9171
5) 956-4818 | | 7969 Engineer Rd., Suite 216, San Diego,
Calif. 92111 | (714) 279-042 | 0 COLORADO | 3) 433-0432 | | DISTRICT OF COLUMBIA | | Denver, Colorado 80211 | | | 1725 "K" St., N.W., Washington, D.C. 20006 | (202) 337-850 | 0 DISTRICT OF COLUMBIA
1725 "K" St., N.W., Washington, D.C. 20006 (20 | 2) 337-8500 | | FLORIDA 2828 Broadway, Riviera Beach, Fla. 33404 | (305) 842-15 | 7 FLORIDA
2828 Broadway, Riviera Beach, Florida (30 | 15) 842-2171 | | ILLINOIS | | 33404 | 00) 042-2171 | | 446 E. Howard Ave., Des Plaines, Ill. 60018 | (312) 827-00 | | 04) 634-6131 | | INDIANA | (015) 540 40 | Atlanta, Georgia 30329 | 747 004-0101 | | 2511 East 46th St., Building Q2,
Atkinson Sq. Indianapolis, Ind. 46205 | (317) 546-40 | ILLINOIS | 2) 827-0033 | | MASSACHUSETTS | (017) 444 70 | 60018 | | | 64 "A" St., Needham Heights, Mass. 02194 | (617) 444-72 | | 17) 636-5321 | | MICHIGAN 28840 Southfield Rd., Lathrup Village, | (313) 353-97 | Indiana 46201 | .,, 555 5522 | | Mich. 48075 | (010) 000 07 | MASSACHUSETTS | 17) 444 0400 | | MINNESOTA | | 80 "A" St., Needham Heights, Mass. 02194 (6) MICHIGAN | 17) 444-8492 | | 5805 Excelsior Blvd., Minneapolis, Minn. 55416 | (612) 929-06 | | 13) 353-9770 | | MISSOURI | | MINNESOTA | 10) 000 0000 | | 7711 State Line, Suite 112, Kansas City,
Mo. 64114 | (816) 363-17 | 55416 | 12) 929-0676 | | NEW JERSEY | | MISSOURI | 167 262 6460 | | (Metropolitan Phila.:) | (000) 400 40 | Mo 64114 | 16) 363-6462 | | 605 Marlton Pike, Haddonfield, N.J. 08034
(Metropolitan NYC:) | (609) 428-48 | NEW YORK | | | 2075 Millburn Ave., Maplewood, N.J. 07040 | (201) 485-39 | 731 James St., Room 206, Syracuse, N.Y. (3 | 12) 689-7200
15) 479-8134 | | NEW YORK 731 James St., Room 206, Syracuse, N.Y. | (315) 474-55 | 13203
91 OHIO | | | 13203 | (010) 1/1 00 | l621 Euclid Ave., 1600 Keith Bldg., (2
Cleveland, Ohio 44115 | 16) 579-0880 | | OHIO | (010) 550 0 | TFYAC | | | 1621 Euclid Äve., 1600 Keith Bldg.,
Cleveland, Ohio 44115 | (216) 579-08 | ON The state of th | 14) 351-5361 | | TEXAS | (014) 051 5 | WASHINGTON | 067 600 0050 | | 210-C Court Terrace, Exchange Park North,
Dallas, Texas 75235 | (214) 351-5 | 61 2246 First Avenue S., Seattle, Washington (2
98134 | 06) 622-8350 | | GOVERNMENT | | INTERNATIONAL | | | GOVERIAMENT | , | INTERNATIONAL | | | | | U.S.A.Central & Terminal Aves., Clark, N.J. 07066 (2Cable: RADIOINTER | 201) 382-1000 | | CALIFORNIA | | CANADA | | | 6363 Sunset Blvd., Hollywood, Calif., 90028 | (213) 461-9 | 171 1001 Lenoir Street, Montreal 30, Quebec (S
Cable: VICTORADIO | 514) 933-7551 | | DISTRICT OF COLUMBIA 1725 "K" St., N.W., Washington, D.C. 20006 | (202) 337-8 | 500 EUROPE | | | NEW JERSEY | (202) 007-0 | 118 Rue du Rhone, Geneva, Switzerland 35
Cable: RADIOCORP | 5 75 00 to 09 | | 2075 Millburn Ave., Maplewood, N.J. 07040 | (201) 485-3 | 900 FAR EAST | • | | | | 415 Prince's Building, Chater Road 2
Hong Kong
Cable: RADIOINTER | 39529 239522 | | | | | | # RCA TECHNICAL PUBLICATIONS **ELECTRON TUBE HANDBOOK HB-3** RCA RECEIVING TUBE MANUAL RC-25 RCA PHOTOTUBE MANUAL PT-60 RCA TRANSMITTING TUBE MANUAL TT-5 RCA INDUSTRIAL AND MILITARY NUVISTORS ARE AVAILABLE FROM YOUR INDUSTRIAL TUBE DISTRIBUTOR