Dated 16.9.47.

VALVE ELECTRONIC

CV950

Valve

ADMIRALTY SIGNAL ESTABLISHMENT

Specification AD/CV950/Issue 4.

(NC1)

SECURITY

Specn.

Ì	To be read in conjunction with K1003.	Restricted Un		Unclassified								
,	→ Indicates a change											
	TYPE OF DEFLECTION AND FOCUS:- Electrostation BULB:- Internally of conductive of conductive of screen:- To give a green to see the second conductive of the second conduct	Cathode ray tube. FOCUS:- Electrostatic. Internally coated with conductive coating. To give a green trace. Negligible after-glow. 4053A (See Note A).			MARKING See K1003/7. BASE British Standard 9-pin. Pin Electrode							
_	Heater Voltage Heater Current Max. Va3 X-plate sensitivity Y-plate sensitivity Desirable spot size Max. line width (V) (Mm/V) (mm/V)	4.0 1.1 800 100 Va3 90 Va3 1.0	Note B	1 2 3 4 5 6 7 8 9	X1 Y1 A2 H and H Modul A1 an Y2 X2	ator						
7	TYPICAL OPERATING CONDITIONS Va3 Va2 Va1 Vb Va2 Va1 Va2 Va2 Va2 Va2 Va2 Va2 Va2 Va3 Va2 Va3 Va2 Va3 Va3 Va2 Va4	800 135 800 3.0	· ·	DIMENSIONS See Drawing, page 3. PACKAGING See K1005.		page 3.						
-	A. CV950 is obsolescent and should not be ut the same tube, but with an improved for	- 1sed i	n any	new equ and sat	ipment. isfies	CV967 is						

- the same tube, but with an improved focus quality and satisfies all the requirement of CV950.
 - B. The tube shall be of the three anode construction.
- Co. Focus Quality measured as follows: With a focussed raster of 2.5 x 2.5 cms set to a brightness of 1.0 E.F.C. at Va3 = 800 V, the drive positive from V blackout is noted (= x) and should be not more positive than -1.0 V.

Then with Va3 = 800 V, and the beam just blacked out, a nominally square wave positive pulse of width 100 assecs and repetition freq. 100 c.p.s. applied between cathode and modulator, with a peak value = x, and with the high freq. time base set to produce a line 2.5 cms long in X and Y axes successively (with no adjustment of focus between measurements in the two axes), the line width must not be greater than 1.4 mm in the centre.

CV950

TESTS

To be performed in addition to those applicable in K1003

	Test Conditions									
- To C. C. C.	Vh	Va3	Va2	Va.1	Vmod	Test		Limits		No.
	(V)	(v)	(V)	(V)	(v)			Min.	Max.	Tested
		De	flection	volt	ages sha	ll be applied symmetrically in all cases				
8.						Capacitances (pF.) i. Each X- or each Y- plate to all other electrodes. ii. Modulator electrode to all other electrodes. iii. One X- to one Y- plate.		-	1 5	Type Ap- proval
and the same of th									5	
Ъ	4.0					Ih	(A)	0.95	1.25	5% (10)
0	4.0	300 Ad- 800 Ad- justed justed				i. Line width		grea than	that tand-	100%
		See K1003/5.7.		ii. Va2	(V)	50	175	5% . (10)		
					iii. Vmod (V)		To be at least 2 Vve to C.		100%	
đ	4.0	800	As test	800	Ad- justed	Vmod for cut-off	(v)	- 7	 20	100%
е	4.0	800	As test 'c'	800	Any con- venient value	i. X-plate sensitivityii. Y-plate sensitivity	(V/mm) (V/mm)	80 Va3 72 Va3	120 Va3 108 Va3	5% (10)
f	4.0		As test		Any con- venient value	Deviation of spot centre of screen	from	-	5	100%
	See ATOOMY TO.									
89	Defl the	4.0 800 As test 800 Any convenient Deflection to cover the stated circle concentric with the screen.		Minimum useful scr diameter	een (mm)	30		100%		
h	4.0	800	As test	800	Any con- venient value	Angle between X- a axes of deflection		85°	95 ^{,0}	100%
ĵ	defl rela	ectio	As test 'c' Y-axis o n measur to Axis	f ed	Any convenient	Orientation of Y-a deflection	xis of	645	10°	100%

L VIEWING THE SCREEN OF THE TUBE WITH THE BASE ORIENTATED AS SHOWN ABOVE, A POSITIVE POTENTIAL APPLIED TO PIN NOL(XI) SHALL DEFLECT THE SPOT TO THE LEFT AND A POSITIVE POTENTIAL APPLIED TO PIN No.2 (YI.) SHALL DEFLECT THE SPOT DOWNWARDS. 2. ALL DIMENSIONS ARE IN MILLIMETRES.

CV 950/4/3