INSTUMENT CATHODE-RAY TUBE 14 cm diagonal, rectangular flat faced, split-beam oscilloscope tube with mesh and metal-backed screen. | QUICK REFERENCE DATA | | | | |---|---|----------------|----------------------| | Final accelerator voltage | V _{g7(ℓ)} | 10 | kV | | Display area | 5 (-) | 100 x 80 | mm^2 | | Deflection coefficient, horizontal vertical | M _x
M _y '
M _v '' | 13,5
9
9 | V/cm
V/cm
V/cm | | Overlap of the systems | y | 100 | % | SCREEN: Metal-backed phosphor | | Colour | Persistence | |-----------|--------|--------------| | E14-100GH | green | medium short | | | | : 100 ** | | Useful screen dimensions | min. | 100 x 80 | mm^2 | | | | |--|------------------|----------|--------|--|--|--| | Useful scan at $V_{g7(\ell)}/V_{g2,g4} = 6.7$ | | | | | | | | horizontal | min. | 100 | mm | | | | | vertical (each system) | min. | 80 | mm. | | | | | overlap | | 100 | % | | | | | Spot eccentricity in horizontal direction | max. | 7 | mm | | | | | in vertical direction | max. | 10 | mm | | | | | HEATING: indirect by AC or DC; parallel supply | | | | | | | | Heater voltage | $v_{\mathbf{f}}$ | 6,3 | V | | | | | Heater current | If | 300 | mA | | | | # **MECHANICAL DATA** Dimensions in mm Fig. 1 Outlines. - (1) The external conductive coating should be earthed. - (2) The bulge at the frit seal may increase the indicated maximum dimensions by not more than 2 mm. - (3) The centre of the contact is located within a square of $10~\text{mm} \times 10~\text{mm}$ around the true geometrical position. # Mounting position The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube. # MECHANICAL DATA (continued) # Dimensions and connections See also outline drawing. Overall length (socket included) max. 425 mmFace dimensions max. $120 \times 100 \text{ mm}^2$ Net weight approx. 900 g Base 14-pin all glass # Accessories Socket (supplied with tube) type 55566 Final accelerator contact connector type 55563A FOCUSING Electrostatic **DEFLECTION** Double electrostatic x-plates symmetrical y-plates symmetrical If the full deflection capacity of the tube is used, part of the beam is intercepted by the deflection plates; hence a low-impedance deflection plate drive is desirable. Angle between x and y traces (each beam) 90 ± 1^{-0} Angle between corresponding y traces at screen centre max. 45 'Angle between x trace and horizontal axis of the face max. 0 #### LINE WIDTH Measured with the shrinking raster method under typical operating conditions, and adjusted for optimum spot size at a beam current of 5 μA per system. Line width at screen centre 1.w approx. 0,35 mm #### CAPACITANCES | x ₁ to all other elements except x ₂ | $C_{x_1(x_2)}$ | 8 | pF | |--|-------------------------------------|------|----| | x2 to all other elements except x1 | $C_{x_2(x_1)}$ | 8 | pF | | y ₁ ' to all other elements except y ₂ ' | ^C y1'(y2') | 4 | pF | | y2' to all other elements except y1' | C _{y2'} (y _{1'}) | 5, 5 | pF | | y ₁ " to all other elements except y ₂ " | C _{y1"(y2")} | 5 | pF | | y2" to all other elements except y1" | C _{y2} "(y ₁ ") | 4 | pF | | External conductive coating to all other elements | $^{\mathrm{C}}\mathrm{_{m}}$ | 800 | pF | # CAPACITANCES (continued) | x_1 to x_2 | $C_{x_1x_2}$ | 3 pF | |--|-----------------------|------| | y ₁ ' to y ₂ ' | с _{у1} 'у2' | 1 pF | | y ₁ " to y ₂ " | ^С у1''у2'' | l pF | | Control grid to all other elements | $C_{\mathbf{g}_1}$ | 6 pF | | Cathode and heater to all other elements | C _{kf/R} | 3 pF | #### NOTES 1. This tube is designed for optimum performance when operating at a ratio ${}^{V}g7(t){}^{/V}g2, g4$ = 6,7. The geometry control voltage V_{g6} should be adjusted within the indicated range (values with respect to the mean x-plate potential). - 2. A negative control voltage on g_5 (with respect to the mean x-plate potential) will cause some pincushion distortion and less background light. By varying the two voltages V_{g_5} and V_{g_6} it is possible to find the best compromise between background light and raster distortion. - 3. The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range. - 4. The sensitivity at a deflection less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value. - 5. A graticule, consisting of concentric rectangles of 100 mm x 80 mm and 96 mm x 77 mm is aligned with the electrical x-axis of the tube. With optimum correction potentials applied a raster of each system will fall between these rectangles. | | | | ノヽ | | | |------------------------------|---|----------------------------------|--------------|---------------|--------------------| | TYPICAL OPERATING CONDITIONS | | | | | | | | Final accelerator voltage | $V_{g7}(\ell)$ | | 10 | kV | | | Geometry control electrode voltage | v_{g6} | 1500 | ± 100 | V see note 1 | | | Interplate shield voltage | v_{g_5} | | 1500 | v | | | Background illumination control voltage | $\Delta { m V}_{ m g_{ m 5}}$ | 0 t | o - 15 | V see note 2 | | | Focusing electrode voltage | v_{g_3} | 350 t | o 650 | V | | | First accelerator voltage | Vg ₂ , g ₄ | | 1500 | V | | | Astigmatism control voltage | ΔV_{g_2} , g_4 | | ±75 | V see note 3 | | | Control grid voltage for extinction | | | | | | | of focused spot | v_{g_1} | -20 t | to -70 | V | | | Deflection coefficient, horizontal | $M_{\mathbf{X}}$ | _ | 12, 5
14 | V/cm
V/cm | | | | | < | 9 | V/cm
V/cm | | | vertical | M _y ' | < | 10 | V/cm | | | | | | 9 | V/cm | | | | M _y '' | < | 10 | V/cm | | | Deviation of deflection linearity | | < | 2 | % see note 4 | | | Geometry distortion | | | | see note 5 | | | Useful scan, horizontal | | > | 100 | mm | | | vertical | | > | 80 | mm
 | | | Overlap of the two systems, horizontal vertical | | | 100
100 | %
% | | | LIMITING VALUES (Absolute max. rating system | em) | | | | | | Final accelerator voltage | $V_{g7}(\ell)$ | max.
min. | 12
9 | kV
kV | | | Geometry control electrode voltage | v_{g_6} | max. | 2200 | V | | | Interplate shield voltage | v_{g_5} | max. | 2200 | v | | | Focusing electrode voltage | v_{g_3} | max. | 2200 | V | | | First accelerator and astigmatism control | 53 | | 0000 | 77 | | | electrode voltage | v_{g_2, g_4} | max.
min. | 2200
1350 | V
V | | | | | max. | 200 | V | | | Control grid voltage | $-V_{\mathbf{g}_{1}}$ | min. | 0 | v | | | Voltage between astigmatism control electrode | V_{g_4}/x | max. | 500 | V | | | and any deflection plate | Vg4/y | max. | 500 | V | | | Grid drive average | | max. | 30 | V | | | Screen dissipation | Wℓ | max. | 8 | mW/cm ² | | | Ratio $Vg_{7(\ell)}/Vg_{2}$, g_{4} | 8. (// 84 8- | max. | 6, 7 | | | | Control grid circuit resistance | R_{g1} | max. | 1 | ΜΩ | # **CORRECTION COILS** #### General The E14-100GH is provided with a pair of coils for image rotation which enable the alignment of the x-trace with the x-lines of the graticule. Fig. 2 Diagram of coil unit. The image rotating coils are wound concentrically around the tube neck. Under typical operating conditions 50 A turns are required for the maximum rotation of 5°. Both coils have 850 turns. This means that a current of max. 30 mA per coil is required which can be obtained by using a 24 V supply when the coils are connected in series, or a 12 V supply when they are in parallel. # Connecting the coils The coils have been connected to the 4 soldering tags as follows: Fig. 3 Dimensions and connections. # **BEAM CENTRING MAGNET** Inherent to the split-beam system a slight difference between the two beam currents can occur after splitting, resulting in different intensities of the two traces. In order to equalize the beam currents, a beam centring magnet should be mounted near the base of the gun and adjusted for the required field direction and field strength.