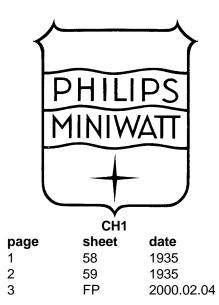
CH1_{Hexode}

Für die Beschreibung dieser Röhre, für die Kurven, Sockelschaltung und Abmessungen wird auf die Röhre AH 1 verwiesen. Diese Röhre ist bis auf die Kathodendaten vollkommen mit der Röhre AH 1 identisch.

Betriebsdaten für die Verwendung als Regelmodulatorröhre.

```
..... Vf
                                                   = 13 \text{ V}
Heizstrom ..... If
                                                   = 0,200 A
Anodenspannung ..... Va
                                                   = 200 V
Schirmgitterspannung ...... Vg2
                                                   = 100 V
= 50 V
Anodenstrom (bei Vg1 = ca. -2 V)....Ia
                                                   = 2.4 \text{ mA}^1
\leq 0.1 \text{ mA}^1
Schirmgitterstrom (bei Vg1 = ca. -2 V) ...... Ig2
                                                   = 4 \text{ mA}^1
Schirmgitterstrom (bei Vg1 = ca. -2 V) ................... Ig4
                                                   = 0.1 \text{ mA}^1
Transponierungssteilheit (bei Vg1 = ca. -2 \text{ V}) \dots Sc
                                                   \equiv 0.55 \text{ mA/V}^{1}
Transponierungssteilheit (bei Vg1 = -20 \text{ V}) \dots Sc
                                                   \leq 0.005 \text{ mA/V}^1
Innerer Widerstand (bei Vg1 = ca. -2 \text{ V}) ...... Ri
                                                   = 1,4 \text{ Megohm}^1
Innerer Widerstand (bei Vg1 = -20 \text{ V}) ..... Ri
                                                   \geq 10 Megohm<sup>1</sup>)
Oszillatorspannung (am 3. Gitter) 2) ...... Vosz
                                                   = 9 V_{eff}
Gittervorspannung am 3. Gitter bei fester Vorsp. ... Vg3
                                                   = -12 \text{ V}
```

¹⁾ In schwingendem Zustand.


²) Gemessen als Spannungsabfall in einem Gitterableitwiderstand von 0,5 M Ω .

Betriebsdaten für die Verwendung als H.F.-oder Z.F.-Verstärker

HeizspannungVf	\equiv 13 V
Heizstrom If	= 0,200 A
Anodenspannung Va	= 200 V
Schirmgitterspannung Vg2	= 100 V
Schirmgitterspannung Vg4	= 50 V
Anodenstrom (bei $Vg1 = Vg3 = ca2 \text{ V}) \dots Ia$	= 4 mA
Anodenstrom (bei $Vg1 = Vg3 = -20 \text{ V} \dots Ia$	≤ 0,015 mA
Schirmgitterstrom (bei $Vg1 \equiv Vg3 \equiv \text{ca.} -2 \text{ V}) \ldots Ig2$	= 1,8 mA
Schirmgitterstrom (bei $Vg1 = Vg3 = ca2 \text{ V}) \dots Ig4$	= 0,2 mA
Maximale Steilheit S max	\equiv 2,6 mA/V
Normale Steilheit (bei $Vg1 = Vg3 = ca12 \text{ V})S$ norm	\equiv 1,8 mA/V
Steilheit (bei $Vg1 = Vg3 - 20$ V)	\leq 0,002 mA/V
Innerer Widerstand (bei $Vg1 = Vg3 = ca2 \text{ V})Ri_{norm}$	= 2,0 Megohm
Innerer Widerstand (bei $Vg1 = Vg3 = -20 \text{ V}) \dots Ri$	≥ 10 Megohm

Ferner gelten noch für die Anwendung dieser Röhre folgende Daten und Beschränkungen:

- 1) Bei selbstregelnder Vorspannung.
- 2) Bei einem Kathodenwiderstand von weniger als 1000 Ohm muss der Entkopplungskondensator mindestens 0,1 µF sein, bei einem grösseren Widerstand mindestens 1 µF.

Except for the heater data the CH1 is equal to the AH1 For further data and curves please refer to AH1